Polarizing Microscopes

and other instruments
for examinations
in polarized light
Polarizing Microscopes

and other instruments

for examinations

in polarized light

ERNST LEITZ GMBH WETZLAR GERMANY
Contents

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
</tr>
<tr>
<td>A Instruments for General Investigations in Polarized Light</td>
</tr>
<tr>
<td>LEITZ Polarizing Microscopes</td>
</tr>
<tr>
<td>SM-POL</td>
</tr>
<tr>
<td>LABORLUX®-POL</td>
</tr>
<tr>
<td>DIALUX®-POL</td>
</tr>
<tr>
<td>EPIOLUX®-POL</td>
</tr>
<tr>
<td>ORTHOLUX®-POL</td>
</tr>
<tr>
<td>PANPHOT®-POL</td>
</tr>
<tr>
<td>General Microscope Accessories</td>
</tr>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>Eyepieces</td>
</tr>
<tr>
<td>Eyepiece micrometers and groticules</td>
</tr>
<tr>
<td>Wright universal eyepiece</td>
</tr>
<tr>
<td>Condensers</td>
</tr>
<tr>
<td>VARIOCOLOR®</td>
</tr>
<tr>
<td>Vertical illuminator</td>
</tr>
<tr>
<td>Immersion caps for microscopy in incident light</td>
</tr>
<tr>
<td>ULTROPAK® incident light illuminator</td>
</tr>
<tr>
<td>Phase contrast equipment for transmitted light</td>
</tr>
<tr>
<td>Phase contrast equipment for incident light</td>
</tr>
<tr>
<td>Attachable mechanical stage</td>
</tr>
<tr>
<td>Object marker</td>
</tr>
<tr>
<td>Object slides, hand press, cover glasses, cover glass thickness gauge</td>
</tr>
<tr>
<td>Immersion oil</td>
</tr>
<tr>
<td>LEITZ Universal Rotating Stages and Accessories</td>
</tr>
<tr>
<td>Universal rotating stages for transmitted light</td>
</tr>
<tr>
<td>Universal stage conoscop</td>
</tr>
<tr>
<td>Waldmann hollow glass sphere</td>
</tr>
<tr>
<td>Universal rotating stage UTR 2</td>
</tr>
<tr>
<td>for opaque specimens</td>
</tr>
<tr>
<td>Accessories for universal stage methods</td>
</tr>
<tr>
<td>B Instruments for Specialized Investigations and Measurements</td>
</tr>
<tr>
<td>1. Determination of the Character of Double Refraction and Measurement of Path Differences</td>
</tr>
<tr>
<td>First-order red and quarter-wave compensators</td>
</tr>
<tr>
<td>Compensators in subparallel position</td>
</tr>
<tr>
<td>Quartz wedges for the tube slot</td>
</tr>
<tr>
<td>Berek rotary compensator</td>
</tr>
<tr>
<td>Mica compensator with quarter-wave plate (elliptical compensator)</td>
</tr>
<tr>
<td>Brace-Kähler compensator with (\frac{1}{10}- \frac{1}{30}) plates</td>
</tr>
<tr>
<td>Quartz wedges for the Wright universal eyepiece</td>
</tr>
<tr>
<td>2. Determination of the Directions of Extinction</td>
</tr>
<tr>
<td>Half-shadow plate after Nakamura</td>
</tr>
<tr>
<td>Half-shadow wedge after Macé de Lépinay</td>
</tr>
<tr>
<td>Soleil double plate (for Wright eyepiece)</td>
</tr>
<tr>
<td>3. Observation of Dichroism</td>
</tr>
<tr>
<td>Eyepiece dichroscope</td>
</tr>
<tr>
<td>4. Determination of the Axial Angle</td>
</tr>
<tr>
<td>5. Determination of the Light Refraction</td>
</tr>
<tr>
<td>Universal stage refractometer after Berek</td>
</tr>
<tr>
<td>Circulation cell after Emmons</td>
</tr>
<tr>
<td>Phase contrast equipment</td>
</tr>
<tr>
<td>LEITZ-JELLEY micro-refractometer</td>
</tr>
<tr>
<td>6. Determination of Object Sizes and Quantitative Relationships</td>
</tr>
<tr>
<td>Stage micrometers</td>
</tr>
<tr>
<td>Eyepiece micrometers and micrometer eyepieces</td>
</tr>
<tr>
<td>Screw-micrometer eyepiece</td>
</tr>
<tr>
<td>Fibre measuring eyepiece</td>
</tr>
<tr>
<td>Integrating stage</td>
</tr>
<tr>
<td>Integrating eyepiece</td>
</tr>
<tr>
<td>Standard slide comparison eyepiece</td>
</tr>
<tr>
<td>7. Determination of Absorption and Reflectance</td>
</tr>
<tr>
<td>Hand spectroscopes</td>
</tr>
<tr>
<td>Microscope photometer</td>
</tr>
<tr>
<td>8. Determination of Changes of Condition at Various Temperatures</td>
</tr>
<tr>
<td>Heating microscope with polarizing equipment</td>
</tr>
<tr>
<td>Microscope heating stage for temperatures (-20^\circ) (+80^\circ) C</td>
</tr>
<tr>
<td>Microscope heating stage for temperatures (-20^\circ) (+350^\circ) C</td>
</tr>
<tr>
<td>Microscope heating stage for temperatures up to (+1000^\circ) C</td>
</tr>
<tr>
<td>Vacuum heating stage up to (+1050^\circ) C</td>
</tr>
<tr>
<td>C Other Instruments for Optical Examinations in Polarized Light</td>
</tr>
<tr>
<td>Binocular prism magnifiers with polarizing equipment</td>
</tr>
<tr>
<td>Stereoscopic microscope with polarizing equipment</td>
</tr>
<tr>
<td>Polarizing outfit for strain and stress tests</td>
</tr>
<tr>
<td>Polarizing attachment for the PRADO projector</td>
</tr>
<tr>
<td>D Photomicrographic Equipment</td>
</tr>
<tr>
<td>MIKAS micro attachment for the LEICA</td>
</tr>
<tr>
<td>IFLEX micro mirror reflex attachment</td>
</tr>
<tr>
<td>MAKAM camera attachment for plates</td>
</tr>
<tr>
<td>ARISTOPHOT universal photographic equipment</td>
</tr>
<tr>
<td>MICROPHOT universal photographic equipment</td>
</tr>
<tr>
<td>E Special Light Sources</td>
</tr>
<tr>
<td>Monochromators</td>
</tr>
<tr>
<td>MONLA universal microscope lamp</td>
</tr>
<tr>
<td>Sodium vapour lamp</td>
</tr>
<tr>
<td>Xenon discharge lamp</td>
</tr>
<tr>
<td>Mercury high-pressure lamp</td>
</tr>
<tr>
<td>F Bibliography</td>
</tr>
</tbody>
</table>
Optical methods of examination with the aid of polarized light have been perfected to such a remarkable extent in the course of the past hundred years that they have been introduced with great success into almost all fields of the natural sciences and technology.

The importance of polarized light for optical research work was recognized very early, and it was BREWSTER (1781-1868) who pointed out, only a few years after the discovery of polarization, the practical possibility of examining organic and inorganic objects in polarized light, especially the diagnosis of minerals. The development of special polarizing instruments, however, proceeded only very slowly at this early stage. H. F. TALBOT equipped a compound microscope with polarizer and analyser (Nicol prisms) for the first time in 1834 and thus introduced an efficient polarizing microscope. But still in 1860 the Utrecht scientist PIETER HARTING wrote in his book "The Microscope": The applications for which a specially constructed polarizing microscope may be desirable are very rare, and therefore an ordinary microscope supplemented by attachable polarizing elements should generally be preferred. In accordance with such opinions LEITZ microscopists supplied at the time were offered with separate polarizers and analysers for mineralogical work, and special polarizing microscopes such as the Rosenbusch polarizing stand of CARL KELLNER, the founder of the LEITZ works remained exceptions. It was not until the development of the preparation of polished mineralogical thin sections that more exacting methods of examination were called for and led to a growing demand for proper polarizing microscopes. The first LEITZ polarizing microscope was supplied in 1885, and already 5 years later a special petrological instrument was introduced. Ample proof of the efforts made in this new field is the fact that already in 1893 a special catalogue on polarizing microscopes and accessories was published by E. LEITZ, WETZLAR.

The type of microscope stand developed at the beginning of the twentieth century featured a horseshoe foot, inclinable curved limb, and a novel micrometer screw on horizontal axis immediately below the coarse focusing heads proved to be extremely successful for half a century. It was only in recent years that new advanced designs with built-in illuminating systems were introduced, which have meanwhile been generally recognized for their perfection in every respect.

In 1912, MAX BERÉK, former student of THEODOR LIEBISCH, the noted scientist on mineralogy and crystallography, joined the LEITZ staff. His work found its expression in the advancement of the polarizing microscope and optical methods of examination and consolidated the leading position of LEITZ microscopes in the mineralogical field. It is his merit to have laid down an exact theory on microscopy in transmitted and incident light including polarized light and to have introduced remarkable improvements in our designs. His achievements are most outstanding in incident light microscopy. His compensating prism (trapezoidal prism), widely used today, deflects the illuminating rays without changing their state of polarization. This optical means became the basis of quantitative examination in incident light.

The application of polarized light in microscopy initially confined to the work of the mineralogists gradually found its way into other fields of the natural sciences. W. J. SCHMIDT greatly contributed to the introduction of polarized light microscopy into biological and medical research by his fundamental papers (1924, 1954, 1955 as listed on page 60), by which new methods were laid down and former prejudices removed.

The classical form of the polarizing microscope stand as it was introduced at the beginning of our century was manufactured with more or less external modifications until radically new designs appeared a few years ago which followed the example set by the large biological research microscope ORTHOLUX about 25 years earlier. The outstanding features of this famous instrument were adopted for creating a range of polarizing microscopes which will meet all requirements of modern teaching, routine laboratory work, as well as research, as regards versatility, performance and convenience in operation, since our designers worked in close contact with noted scientists and users of our polarizing outfits.

Like the well-known ORTHOLUX the new polarizing stands offer the advantages of a built-in illuminating system, low-placed focusing controls for utmost convenience and displacement of the freely accessible object stage while the observation height of the interchangeable monocular and binocular tubes remains unchanged. Binocular vision can now be applied to orthoscopic as well as conoscopic observations. A remarkable degree of interchangeability ensures ready adoption of the new polarizing stands to all types of work without any loss in accuracy and dependability. The following outfits are available.
The principle underlying the combined focusing motion is by simply reversing the rotation of the control head.

The illustration shows schematically the design and operation of the combined coarse and fine adjustment with single-knob control now incorporated in several LEITZ polarizing microscopes (for details see text below).

1. **SM-POL.** Simple polarizing microscope for general examinations in transmitted light.

2. **LABORLUX-POL.** Polarizing microscope with built-in illuminating system for investigations in transmitted light and with provision for work in incident light.

3. **DIALUX-POL.** Large polarizing microscope with built-in illuminating system for all types of research work in transmitted light and with provision for work in incident light.

4. **EPILUX-POL.** Polarizing microscope for work in incident light with provision for fitting transmitted light equipment.

5. **ORTHOLUX-POL.** Large universal research microscope with built-in illuminating system for work in transmitted and incident light including incident phase contrast illumination.

6. **PANPHOT-POL.** Large universal camera microscope.

Full particulars of the mechanical and optical equipment of these microscopes will be found in the descriptions and specifications of this catalogue. These introductory notes will therefore only summarize some of the outstanding features of these instruments.

The new microscope stands are characterized by their modern pleasing and at the same time most practical form and the convenient arrangement of oil controls and scales. Particularly noteworthy are the low-placed coarse and fine adjustment controls fitted on either side. These actuate the object stage so that the microscope tube always retains its vertical position. This renders these microscopes ideal for the use of camera attachments or other specialized tube equipment without the risk of adversely affecting the focusing adjustment by the weight of such equipment. The vertical stage movement operates along polished precision ball-races ensuring an unvarying smooth motion, free of backlash, at all times and under all conditions of practical use.

The polarizing microscopes SM-POL, LABORLUX-POL, DIALUX-POL and EPILUX-POL incorporate the single-knob combined coarse and fine focusing adjustment. The transition from one mode of focusing to another is instantaneous and affected by simply reversing the rotation of the control head.

The principle underlying the combined focusing motion is shown in the above schematic drawing. The control heads (1) are connected by an axis (2) which carries in its central portion a rotatable worm gear (4). This gear is automatically coupled to the rotation of the axis as soon as the pin (8) of the latter touches one of the two small shafts (3) protruding from the end of the worm gear. When this is rotated the movement is transmitted via a pinion (9) to a rack fitted to the movable bracket of the object stage whereby its coarse adjustment is effected. The main axis (2) also carries near its left end a fixed cam piece (6). As long as the pin (8) moves freely between the two shafts (3) the rotatory movement of the axis is changed into a lateral displacement of the worm gear by means of a spring-loaded ball (5) forming a pressure bearing (7) on the cam piece (6). The lateral worm displacement in turn effects a slow motion of the pinion (9) thus acting as a micrometer screw to the object stage.

The polarizing elements of the LEITZ microscopes are in most cases high-grade polarization filters with a neutral-grey polarizing film to suit microscopic requirements. These filters have been considerably improved in recent years and their efficiency is equal to calcite prisms formerly exclusively used in LEITZ microscopes. As constructional elements for microscopes these filters are more advantageous as regards the smaller space required and the possibility of making the instruments even more convenient in their operation. Moreover, the microscopic images of instruments equipped with polarizing filters are free from astigmatism without the interference of additional optical means. The DIALUX-POL research stand is alternatively made with calcite polarizing prisms which are still preferred for specialized work such as spectro-photometric measurements or prolonged examinations and photomicrography with the aid of high-power light sources, i.e., carbon arc or xenon discharge lamps. For some reasons the PANPHOT-POL camera microscope is regularly equipped with a prism polarizer which is also recommended for the ORTHOLUX-POL when this instrument is used in conjunction with a high-power light source for work over long periods.

This catalogue with many illustrations and descriptions of instruments aims at providing a complete survey of LEITZ polarizing microscopes and accessories with full information as regards the range of applications or very special uses of the various items so as to enable the reader to select the outfit or supplementary equipment best suited to his work. Brief specifications and codewords are included to facilitate ordering. Particular attention is also drawn to the bibliography at the end of this catalogue, where text books and special papers are enumerated to help the user of our instruments in procuring even more detailed information on the construction and the use of our instruments than our catalogues and instruction booklets can provide. We shall be pleased to give additional individual advice and submit quotations through our agents.
Instruments for General Investigations in Polarized Light

1. LEITZ Polarizing Microscopes
2. General Microscope Accessories
3. LEITZ Universal Rotating Stages
SM-POL

Simple Polarizing Microscope
for general examinations
in transmitted light, recommended
for students' and general laboratory work

Technical Description:

Stand
Combined coarse and fine adjustment with single-knob control
actuating the object stage.
The scale intervals on the control head indicate 0.002 mm. in the
micrometer range and approx. 0.025 mm. in the coarse focusing
range.
Rotating object stage No. 35 of 120 mm. dia., with graduation in
degrees with vernier and two clips (no provision for fitting uni-
versal rotating stages).
Condenser sleeve and rack and pinion focusing motion. Bushing
in the microscope base to fit a daylight mirror or a lamp attach-
ment.
Bayonet tube changing head and swing-out filter analyser in the
top of the stand.
Revolving objective nosepiece with individual centring devices
or objective centring clutch as desired; each with slot for com-
penators. The objective changer is permanently fitted to the
stand.
Interchangeable Tubes

1. Monocular Pol-tube P 11, inclined, for the reception of wide-field eyepieces 30 mm. dia. Built-in Bertrand auxiliary lens and pin-hole diaphragm, which may be put into operation as required.

2. Binocular Pol-tube S 20, inclined, for the reception of standard eyepieces 23.2 mm. dia.

3. Photographic Pol-tube O 14, vertical, with built-in Bertrand auxiliary lens and pin-hole diaphragm as well as a flange with index for mounting a top analyser.

Condenser and Polarizer

1. Polorizing condenser No. 57 in cylindrical mount with swing-out top lens, N. A. 0.90. Tap part replaceable by a system for N. A. 1.40. Aperture iris diaphragm and detachable filter polarizer in rotating mount with markings at each 90° setting.

2. Other condensers in cylindrical mount (see page 23) can also be fitted.

Illumination

The universally adjustable daylight mirror can be instantly replaced by the lamp attachment with 6 volt 15 watt bulb or the Microdia lamp for direct connection to the mains.

Microscope Outfits

Polarizing microscope SM-POL comprising stand with objective centring clutch and three objective changing collars, rack and pinion for focusing the condenser, Pol-tube P 11, rotating object stage No. 35, polarizing condenser No. 57, first-order red compensator, plane and concave mirror, wooden cabinet with lock and key.

Basic outfit (SM-POL 0.73-4 P 11 35/57) IMIND

General-purpose optical equipment:
Achromatic objective P 3.5/0.10 PEBAY
Achromatic objective P 10/0.25 PETRI
Achromatic objective P 50/0.85 PECAZ
Huygens eyepiece P 5x (30 mm. dio. with cross lines and focusing eyepens) IIAWS

Complete optical equipment No. B 1
(magnifications 17.5-250x) IMJES

For other objectives and eyepieces see pages 21 and 22.

Polarizing Microscope SM-POL with objective centring clutch and optical equipment No. B 1
(SM-POL 0.73-4 P 11 35/57 B 1) IMKAS

Polarizing Microscope SM-POL with quadruple revolving nosepiece with individual objective centring and optical equipment No. B 1
(SM-POL 0.34-4 P 11 35/57 B 1) IMKET

Supplementary Equipment

Pol-tube P 11, inclined, for wide-field eyepieces 30 mm. dia. (as included in above outfits) PEBOC
Binocular Pol-tube S 20, inclined, for eyepieces 23.2 mm. dia. PEBIB
Paired Huygens eyepieces P 8x, one with cross lines and focusing eyepens PEFUK
Photographic Pol-tube O 14 for wide-field eyepieces 30 mm. dia. with Bertrand auxiliary lens, pin-hole diaphragm and flange with index for a top analyser PEFIF
Microdia (15 watt) attachment for direct connection to the mains NADEL
SPore bulb 15 watts (state voltage) LINRON
Low-voltage lamp attachment (6 volts 15 watts) with regulating transformer (state voltage) NANAW- RESEV
Regulating transformer for 110-220 volts A. C. (separate price) RESEV
Regulating transformer for 220-250 volts A. C. (separate price) RESUY
Spore bulb 6 volts 15 watts LINOP
Wooden cabinet with lock and key (separate price) PEITY
Flexible plastic dust cover ISDID

For further accessories see pages 21-23.
LABORLUX-POL

Polarizing Microscope with built-in illuminating system
for investigations in transmitted light and provision
for work in incident light

Technical Description:

Stand

Combined coarse and fine adjustment
with single-knob control actuating the
object stage.
The scale intervals on the control head
indicate 0.002 mm. in the micrometer
range and approx. 0.025 mm. in the coarse
focusing range.
Rotating object stage No. 38 of 130 mm.
dia. with graduation in degrees with vernier
reading to 0.1°, frictional clamp, 2
object clips and removable ring plate for
mounting the universal rotating stages.
Horizontal dovetailed condenser holder
with rack and pinion focusing motion.
Illuminating system in the microscope base
with removable 6 volt 15 watt lamp unit.
Bayonette changing head and swing-
out filter analyser in the top of the stand.
Horizontal dovetailed holder taking the
various interchangeable objective
changers and incident light-illuminators.

Interchangeable Tubes

1. Monocular Pol-tube P 11, inclined, for
use with wide-field eyepieces 30 mm.
dia. Swing-out Bertrand auxiliary lens
and independently operated pin-hole
diaphragm.
2. Binocular Pol-tube S 20, inclined, for
standard eyepieces of 23.2 mm. dia.
3. Photographic Pol-tube O 14, vertical
type, with Bertrand lens and diaphragm
as in the observation tube P 11
and an additional flange with index
for using a top analyser.
4. Photographic Pol-tube FS22, combined
type, for binocular vision with standard

Objectives

1. Objective
2. Revolving built-in objective
3. Veritical polarizer
4. Vertical back brock for objective
5. ULTRAPL for the high magnifications
particulars

Condensers

1. Three-lens
dovetailed
0.90; the
N. A. is
marking
2. Other condensers
fitted (see

Illuminators

Cylindrical
base of the
rollable by a
plane and
light source

8
Objective Changers
1. Objective centring clutch with compensator slot.
2. Revolving nosepiece with compensator slot and built-in individual centring devices for 4 or 5 objectives.
3. Vertical illuminator with compensator slot, prism polarizer and 6 volt 15 watt lamp (for full particulars see page 24).
4. Vertical illuminator as under 4, but with special bracket for using the microscope photometer (as described on page 42).
5. ULTROPAK illuminator with 6 volt 15 watt lamp for the examination of unpolished opaque specimens in incident dark-field illumination (for full particulars see page 25).

Condenser and Polarizer
1. Three-lens polarizing condenser No. 54 on dovetail slide, with swing-out top lens, N.A. 0.90; the top may be replaced by a system of N.A. 1.40. Aperture iris diaphragm and detachable filter polarizer in rotating mount with markings at each 90° setting.
2. Other condensers on dovetail slide can also be fitted (see page 22).

Illumination
Cylindrical 6 volt 15 watt lamp unit inserted in the base of the microscope from the rear and replaceable by a sodium vapour lamp. Supplementary plane and concave mirror for use with separate light sources.

Microscope Outfits
Polarizing microscope LABORLUX-POL, comprising stand with detachable objective centring clutch with 4 objective changing collars, rack and pinion focusing motion for the condenser, cylindrical 6 volt 15 watt lamp unit in the base of the microscope for transmitted light, Pol-tube P 11, rotating object stage No. 38, polarizing condenser No. 54, regulating transformer for 110-220 volts A.C., plane and concave mirror, first-order red compensator, quarter-wave compensator, wooden cabinet with lock and key.

Basic outfit (LABORLUX-POL 7-74-5-30 P 11 38/54 + RESEV) PEDUG

Polarizing Microscope LABORLUX-POL with objective centring clutch and optical equipment No. 2 (LABORLUX-POL 7-74-5-30 P 11 38/54 + RESEV 82) PEGF

Polarizing Microscope LABORLUX-POL with revolving nosepiece with individual centring devices for 4 objectives and optical equipment B 2 (LABORLUX-POL 7-34-5-30 P 11 36/54 + RESEV 82) PEGIG

Supplementary Equipment
Attachments for incident light examinations as described on pages 24 and 25.

Pol-tube P 11, inclined, for wide-field eyepieces 30 mm. dio. (as included in above outfits) PEBOC

Binocular Pol-tube S 20, inclined, for eyepieces 23.2 mm. dio. PEBIB

Photo-Pol-tube FS 22 for binocular observation (30.2 mm.) and photomicrography (30 mm.) PEGAD

Paired eyepieces for S 20 and FS 22 tubes: Huygens eyepieces P 8x, one with cross lines and focusing eyepicels PEHUK

Photographic Pol-tube O 14 for eyepieces 30 mm. dio. with Bertrand lens, diaphragm and flange with index for top analyser PEFIF

Rotating object stage No. 39, as No. 38, but with built-in arresting device for each 45° setting (this is in preparation and can only be supplied on new instruments). PECOD

Detachable revolving nosepiece with centring devices for four objectives (7-34-4-4) PEZUC

Detachable revolving nosepiece with centring devices for five objectives (7-35-4-4) PEXOY

Detachable objective centring clutch with 4 objective changing collars (7-74-4-4) PEZOB

Regulating transformer for 110-220 volts A.C. (separate price) RESEV

Regulating transformer for 220-250 volts A.C. (separate price) RESUY

Spares bulb 6 watts 15 watts LINO

Sodium vapour lamp unit with collimator and starting equipment for 110 volts A.C. NATEC

Sodium vapour burner, as replacement NATA

Wooden cabinet with lock and key (separate price) NAPOB

Flexible plastic dust cover PIENT

For further accessories see pages 21-31.
DIALUX-POL

Large Polarizing Microscope
with built-in illuminating system
for all types of research work
in transmitted light and provision
for work in incident light.
Synchronous rotation of polarizer and analyser.

Technical Description:

Stand
Combined coarse and fine adjustment
with single-knob control actuating the
object stage.
The scale intervals on the control head
indicate 0.002 mm. in the micrometer range
and approx. 0.025 mm. in the coarse
focusing range.
Rotating object stage No. 37 of 150 mm.
dia., with graduation in degrees and verniers
reading to 0.1°, automatic stage setting
device arresting the rotation at 45°
intervals regardless of the initial setting,
frictional clamp, two stage clips and
removable ring plate for mounting the
universal rotating stages.
Horizontal dovetailed condenser holder
with rack and pinion focusing motion.
Illuminating system in the microscope base
with removable 6 volt 15 watt lamp unit.
Bayonet tube changing head and swing-out
filter or prism analyser with 180°
rotation in the top of the stand. The
rotation can be read on a circular scale
with vernier to an accuracy of 0.1° and
clamped in any position.
The Bertrand lens system can be centred,
focused and switched in and out of oper-
ation as required. It is fully effective for
conoscopic work even with the binocular
tube.
Horizontal dovetailed holder taking vari-
ous interchangeable objective changers
and incident light illuminators.
Interchangeable Tubes
1. Monocular Pol-tube P 10, inclined, for the reception of wide-field eyepieces of 30 mm. dia. and with built-in iris diaphragm.
2. Binocular Pol-tube S 20, inclined, for standard eyepieces of 23.2 mm. dia.
3. Photographic Pol-tube O 14, vertical type, for wide-field eyepieces of 30 mm. dia., with built-in iris diaphragm and flange with index for using a top analyser.
4. Photographic Pol-tube FS 21, combined type, for binocular vision with standard eyepieces 23.2 mm. and photomicrography with wide-field eyepieces 30 mm. dia. fitting the combined straight tube with flange and index for using a top analyser. Built-in pinhole diaphragm.

Objective Changers
1. Objective centring clutch with compensator slot.
2. Revolving nosepiece with compensator slot and built-in individual centring devices for 4 or 5 objectives.
3. Vertical illuminator with compensator slot, prism polarizer and 6 volt 15 watt lamp (for full particulars see page 24).
4. Vertical illuminator as under 3, but with special bracket for using the microscope photometer (as described on page 42).

5. ULTROPAX illuminator with 6 volt 15 watt lamp for the examination of unpolished opaque specimens in incident dark-field illumination.

Condenser and Polarizer
1. Five-lens two-diaphragm polarizing condenser No. 50 f on dovetail slide with swing-out top part, N. A. 0.85; the top may be replaced by a system of N. A. 1.40. Aperture and field-of-view iris diaphragms and removable filter polarizer in rotating mount graduated at 5° intervals.
2. Five-lens two-diaphragm polarizing condenser No. 50 p, as under 1., but with prism polarizer.
3. Other condensers on dovetail slide can also be fitted (see page 23).

Illumination
Cylindrical 6 volt 15 watt lamp unit inserted in the base of the microscope from the rear and replaceable by a sodium vapour lamp. Supplementary plane and concave mirror for use with separate light sources.
Microscope Outfits

Polarizing Microscope DIALUX-POL comprising stand with swing-out rotating analyser, centring and focusing Bertrand lens system and detachable objective centring clutch with 4 objective changing collars, rock and pinion focusing motion for the condenser, cylindrical 6 volt 15 watt lamp unit in the base of the microscope for transmitted light, Pol-tube T 10, rotating object stage No. 37, polarizing condenser No. 50 f., regulating transformer for 110–220 volts A.C., plane and concave mirror, first-order red compensator, quarter-wave compensator, wooden cabinet with lock and key.

Basic outfit (DIALUX-POL 7:74:5:30 P 10 37/50 f + RESEV) PEDEC

General-purpose optical equipment:
Achromatic objective P 3.5/0.10
Achromatic objective P 10/0.25
Achromatic objective P 50/0.85
Achromatic oil immersion P 100/1.32
Huygens eyepiece P 8x (50 mm. dio.) with cross lines and focusing eyepens
Huygens eyepiece P 6x (30 mm. dio.) with line cross, micrometer scale 10 mm. with 100 intervals, and focusing eyepens
Stage micrometer 2 mm. with 200 intervals
Immersion condenser cap N. A. 1.40

Complete optical equipment No. B2
(Magnifications 21–500x)

For other objectives and eyepens see pages 21 and 22.

Polarizing Microscope DIALUX-POL with objective centring clutch and optical equipment No. B 2
(DIALUX-POL 7:74:5:30 P 10 37/50 f + RESEV B 2) PEGOH

Polarizing Microscope DIALUX-POL with revolving nosepiece with individual centring devices for 4 objectives and optical equipment No. B 2
(DIALUX-POL 7:34:5:30 P 10 36/50 f + RESEV B 2) PEGUJ

If desired the DIALUX-POL can be supplied with polarizing prisms in place of the filter equipment specified above. Then the condenser 50 f takes the place of the 37/50 f and the analyser filter in the microscope top is replaced by an appropriate prism. Extra cost PEFUS

Supplementary Equipment

Attachments for incident light examinations as described on pages 24 and 25.

Pol-tube T 10, inclined, for wide-field eyepens
30 mm. dia., with built-in iris diaphragm (as included in outfits specified at the left) PEBUD
Binocular Pol-tube S 20, inclined, for eyepens
23.2 mm. dia. PEBIB
Photographic Pol-tube FS 21 for binocular observation
(23.2 mm.) and photomicrography (50 mm.) PEFOG
Paired eyepens for S 20 and FS 21 tubes:
Huygens eyepens P 8x, one with cross lines and focusing eyepens
Photographic Pol-tube 0 13, with iris diaphragm, for wide-field eyepens 30 mm. dia.
Detachable revolving nosepiece with centring devices for 4 objectives (7.34–3.0)
Detachable revolving nosepiece with centring devices for 5 objectives (7.35–3.0)
Detachable objective centring clutch with 4 objective changing collars 7.74–3.0
Arrangement for synchronous rotation of analyser and polarizer PAZUR
Regulating transformer for 110–220 volts A.C. (separate price) RESEV
Regulating transformer for 220–250 volts A.C. (separate price) RESUY
Spares bulb 6 volts 15 watts LINOP
Sodium vapour lamp unit with collimator and starting equipment for 110 volts A.C., for 220 volts A.C. NATEC
Sodium vapour burner, as replacement NATAK
Wooden cabinet with lock and key (separate price) NAPOB
Flexible plastic dust cover PEIMS
For further accessories see pages 21–31.
EPILUX-POL

for work in incident light
(ore microscopy, coal petrography)
with provision for transmitted light.

Technical Description

For ore microscopy and coal petrography the EPILUX-POL is regularly equipped with a vertical illuminator incorporating a rapid changer a compensating prism and a plane glass as light deflecting means for illuminating opaque specimens. Its equipment includes an illuminated field diaphragm with collimator, a rotating prism polarizer with scale reading to 0.25°, an aperture diaphragm with vertical adjustment, a half-stop and a slide with central stops. For the reception of the objectives a centring clutch is permanently fitted to the vertical illuminator. The 6 volt 15 watt lamp attachment with centring device for the bulb can be replaced by a collecting lens when a separate light source is to be used (for further details on the vertical illuminator see p. 24).

The EPILUX-POL is fully adaptable for work in transmitted light for which standardized equipment can be instantly fitted.

Microscope Outfits

Incident Light Microscope EPILUX-POL comprising:
- stand with detachable vertical illuminator on bracket with built-in 6 volt 15 watt lamp,
- 5 objective changing collars,
- rack and pinion focusing motion to the holder for transmitted light condensers,
- Pol-lobe P 11,
- rotating object stage No. 38,
- regulating transformer for 110-220 volts A. C.,
- wooden cabinet with lock and key.

Basic outfit (EPILUX-POL 7.55-5.35 P 11.38/-RESERV) + PEMAK

General-purpose optical equipment:
- Achromatic objective P 5.6/0.15
- Oil immersion objective P 12.5/0.25
- Fluorite objective P FI 45/0.85
- Fluorite oil imm. objective P FI Oil 60/0.95
- Fluorite oil imm. objective P FI Oil 105/1.32
- Huygens eyepiece P 8x (30 mm. dio.) with cross lines and focusing eyepens

Huygens eyepiece P 10x (30 mm. dio.) with cross lines and focusing eyepens
Huygens eyepiece P 6x (30 mm. dio.) with cross lines and micrometer scale 10 mm. with 100 intervals and focusing eyepens
Stage micrometer for incident light with 1 mm. divided in 100 parts on a metal plate 48 x 27 mm.

Complete optical equipment E 2a
(magnifications 34-1050x)

For other objectives and eyepieces see pages 21 and 22.

Incident Light Microscope EPILUX-POL with optical equipment E 2a
(EPILUX-POL 7.55-5.45 P 11.38/-RESERV E 2a)
The EPILUX-POL takes the same supplementary equipment as specified for the LABORLUX-POL on page 9.

Further accessories for work in incident light:
- Hand press for levelling specimens
- Immersion caps for incident light microscopy
- Microscope photometer for measuring reflectance
- Universal rotating stage UTR 2
- ULTROPAK illuminator

see p. 28
see p. 42
see p. 31
see p. 25
Technical Description: Stand

Universally adaptable stand with built-in illuminating system for work in transmitted and incident light. Low-placed coarse and fine adjustment controls actuating the object stage. 1 interval of the micrometer scale equals 0.001 mm. Rotating object stage No. 37 of 150 mm. dia. and graduated in degrees with verniers reading 0.1° and automatic stage setting device arresting the rotation at 45° intervals regardless of the initial setting, frictional clamp, two stage clips and a removable ring plate for mounting the universal rotating stages. Circular aperture in the top of the stand for the reception of the microscope photometer for measuring reflectance (full particulars are given on page 42).

Horizontal dovetail slide taking the arrangement for incident phase contrast illumination and the photometer unit.

Horizontal dovetailed condenser holder with rock and pinion focusing motion.
Microscope Tube
Photographic Pol-tube FS 45, combined type, for binocular observation with standard eyepieces of 23.2 mm. dia. at an inclined position and photomicrography with wide-field eyepieces of 30 mm. dia. in the vertical tube component. Built-in filter analyser which can be put out of operation; 180° rotation with clamp and scale with vernier reading to 0.2°. Bertrand lens system in centring and focusing mount operating in both the monocular and binocular tube parts so that conoscopic examinations are no longer restricted to monocular vision. The photographic tube is equipped with an iris diaphragm, flange with index to receive a top analyser and a supplementary vertical tube head for standard eyepieces of 23.2 mm. dia.

Objective Changers
1. Objective centring clutch with compensator slot.
2. Revolving nosepiece with compensator slot and individual centring devices for 4 or 5 objectives.
3. Vertical illuminator with compensator slot.
 (for detailed description see p. 24).
4. ULTROPAK illuminator (as described on p. 25).
5. Phase contrast equipment for work in incident light
 (for detailed description see p. 28).

Condensers and Polarizers
1. Five-lens two-diaphragm polarizing condenser No. 501 on dovetail slide, with swing-out top part, N. A. 0.85; the top may be replaced by a system of N. A. 1.40. Aperture and field-of-view iris diaphragms and removable filter polarizer in rotating mount graduated at 5° intervals.
2. Five-lens two-diaphragm condenser No. 50p, as under 1., but with prism polarizer (as required for work with arc lamps, xenon lamps etc.).
3. Other condensers on dovetail slide can also be fitted (see page 23).

Illumination
Two 6 volt 30 watt lamps units are attached to the rear of the stand for separate or joint transmitted and incident illumination.
Microscope Outfits

ORTHOLUX-POL (basic outfit) comprising stand, photographic Pol-tube FS 45, rotating object stage No. 37, first-order red plate, quarter-wave plate, lock-up storage case for interchangeable fittings, wooden transport box.

ORTHOLUX-POL basic outfit
[ORTHOLUX-POL — — — — FS 45 37/—]

Fittings for work in transmitted light:
Revolving nosepiece with compensator slot and individual centring devices for 4 objectives (13-34 — —)

Alternatively:
Objective centring clutch with 4 objective changing collars (13-74 — —)
Rock and pinion motion to hold and focus
the condenser (— — 9 —)
Lower lamp attachment with 6 volt 30 watt bulb, daylight filler and ground glass screen for transmitted light (— — — — 1)

Five-lens two-diaphragm polarizing condenser No. 50
Regulating transformer for 100-220 volts A. C.

General-purpose optical equipment (transmitted light)
Adchromatic objective P 3.5/0.10
Adchromatic objective P 10/0.25
Adchromatic objective P 20/0.50
Adchromatic oil immersion P 100/1.30
Huygens eyepiece P 8x (30 mm. dia.) with cross lines and focusing eyepens
Huygens eyepiece P 6x (30 mm. dia.) with line cross, micrometer scale 1 mm. with 100 intervals and focusing eyepens
Paired Huygens eyepieces P 8x (23.2 mm. dia.), one with cross lines and focusing eyepens
Stage micrometer 2 mm. with 200 intervals
Immersion condenser cap No. A. 1.40
Complete optical equipment No. B 2a
(magnifications 26-1000x)
For other objectives and eyepieces see pages 21 and 22.

Fittings for work in incident light:
Vertical illuminator on bracket with vertical dovetail slide, collecting lens with iris diaphragm, half-stop and changing slide with central slots, both 5 objective changing collars and a circular plate as stage inset (13-35 — —)
Upper lamp attachment for incident light with 6 volt 30 watt bulb for connection to the regulating transformer included in the transmitted light equipment, daylight filler and ground glass screen (— — — —)
Hand press with adjustable stop for levelling the specimens on slides
6 metal object slides

General-purpose optical equipment (incident light)
Adchromatic objective P 3.5/0.15
Oil immersion objective P 12.5/0.25
Fluorescent objective P 45/0.85
Fluorite oil immersion P 45/0.95
Fluorite oil immersion P 60/0.95
Huygens eyepiece P 10x (30 mm. dia.) with cross lines and focusing eyepens
Stage micrometer for incident light with scale 1 mm. divided in 100 parts on metal slide
48 x 27 mm.
Complete optical equipment for incident light No. E 2b
For other objectives and eyepieces see pages 21 and 22.

ORTHOLUX-POL for work in transmitted light with objective centring clutch, optical equipment and transformer for 100-220 volts A. C.
[ORTHOLUX-POL 1374/81 FS 45 37/50 f+REDYX 8 2a]

ORTHOLUX-POL, as above, but with revolving nosepiece with built-in centring devices for 4 objectives (in place of the centring clutch)
[ORTHOLUX-POL 1334/81 FS 45 37/50 f+REDYX B 2a]

ORTHOLUX-POL for work in transmitted and incident light with objective centring clutch, vertical illuminator, optical equipment for transmitted and incident light and transformer for 100-220 volts A. C.
[ORTHOLUX-POL 13-34/84 FS 45 37/50 f+RERAS B 2a]

ORTHOLUX-POL as above, but with revolving nosepiece with built-in centring devices for 4 objectives (in place of the centring clutch)
[ORTHOLUX-POL 13-35/84 FS 45 37/50 f+RERAS B 2a]

The same ORTHOLUX-POL outfit as under OLVORG-RERAS but with revolving nosepiece for built-in centring devices for 4 objectives
[ORTHOLUX-POL 13-34/84 FS 45 37/50 f+RERAS B 2a]

ORTHOLUX-POL with microscope photometer for measuring reflectance

ORTHOLUX-POL with microscope photometer for measuring reflectance

Supplementary Equipment and Alternatives

Detachable revolving nosepiece with built-in centring devices for 4 objectives (13-34 — —)

Detachable revolving nosepiece with built-in centring devices for 5 objectives (13-35 — —)

Detachable objective centring clutch with 4 objective changing collars (13-74 — —)

Vertical illuminator (13-35 — —) as described on p. 24

ULTROPAK illuminator (13-18 — —), without analyser, as described on p. 25

Phase contrast equipment for incident illumination (20-42 — —) with 5 objectives as specified on p. 28

Lower lamp attachment for transmitted light (— — — — 1)

Upper lamp attachment for incident light (— — — — 5)

Set of lamp attachments for transmitted and incident light (— — — 4)

Regulating transformer with ammeter for 100-220 volts A. C. (separate price)

Regulating transformer with ammeter for 160-250 volts A. C. (separate price)

Double transformer with regulation and two ammeters for 100-220 volts A. C. (separate price)

Double transformer with regulation and two ammeters for 160-250 volts A. C. (separate price)

REPOV or RERAS or REPIT is required in place of REDYX or REPOW when combined incident and transmitted illumination is to be employed.

Spare bulb 6 volts 30 watts

Two-diaphragm polarizing condenser No. 50 (with filter polarizer)

Two-diaphragm polarizing condenser No. 50 (with prism polarizer which is essential for work with highest power light sources: Xenon lamps, arc lamps etc.)

Microscope photometer for measuring reflectance by incident light, as described on p. 42

Lock-up storage case for accessories (separate price)

Flexible plastic dust cover

For further accessories and alternatives see pages 21-40.
The PANPHOT-POL represents a large polarizing microscope combined with a vertical reflex camera and a high-power illuminating arrangement in a robust compact unit for universal application and especially photomicrography in all ranges of magnification. The apparatus is always ready for use and can be instantly adapted for any type of microscopic illumination, observation and photography. All interchangeable units being fully standardized a simple outfit can be purchased to start with and supplemented for special uses whenever required.
Technical Description

of the PANPHOT-POL Camera Microscope

Stand
Rigid base with rectangular upright of light alloy with internally accommodated surface-coated mirrors for the illuminating system. Illuminating arrangement laterally fitted to the basic stand and microscope carrier as well as vertical camera rigidly attached to the upright front.

Illuminating Arrangement
A filament lamp 12 volts 60 watts and an arc lamp or alternatively a xenon or a mercury vapour high-power lamp are accommodated in the suitably designed lamp housing together with a set of filters which may be used singly or jointly by push-button action. The filament lamp is equipped with a separate filter set consisting of ground glass screen, daylight filter and yellow-green filter for photomicrography.

Microscope Carrier
The microscope carrier rigidly held in front of the upright and perfectly aligned takes the interchangeable tube, objective changers, vertical illuminators, an object stage and various types of condensers as specified on the opposite page.
Microscope Tube
Photographic Pol-tube FS 45, combined type, for binocular observation with standard eyepieces of 23.2 mm. dio. at an inclined position and for photomicrography with wide-field eyepieces of 30 mm. dio., fitting the vertical tube part with flange and index for mounting a tap analyser. Built-in rotating filter analyser with clamp 180° graduation with vernier reading to 0.2°. Bertand lens system in centring and focusing mount operating in both the monocular and binocular tube ports so that conoscopic examinations are no longer restricted to monocular vision. The photographic tube is equipped with an iris diaphragm and an interchangeable tube head for 23.2 mm. standard eyepieces.

Objective Changers
1. Revolving nosepiece which compensator slot and individual centring devices for 4 or 5 objectives.
2. Objective centring clutch with compensator slot.
3. Vertical illuminator with compensator slot, as described on page 24.
4. ULTROPAK illuminator with compensator slot, as described on page 25.
5. Phase contrast equipment for incident light (for particulars see page 28).

Object Stage
Rotating object stage No. 37 of 150 mm. dia. graduated in degrees with verniers reading to 0.1°. Frictional clamp. Automatic stage setting device arresting the rotation at 45° intervals regardless of the initial setting. Two stage clips and removable ring plate for mounting a universal rotating stage.

Condensers
Horizontal dovetailed condenser holder with rock and pinion focusing motion.
Five-lens two-diaphragm polarizing condenser No. 50 p on dovetail slide, with swing-out top component, N. A. 0.85; the top may be replaced by a system of N. A. 1.40. Aperture and field-of-view iris diaphragms and removable prism polarizer in rotating mount graduated in 5° intervals.
(For other condensers on dovetail slide see page 23)

Camera
A vertical bellows camera with mirror reflex housing for plates and films 9x12 cm. (3½" x 4½") is rigidly positioned above the microscope. The microscopic image on the ground glass screen can be conveniently viewed and focused from the observers normal position in front of the instrument. The changeover from visual observation to photomicrography is instantly achieved by simply moving the deflecting mirror, operated by a lateral lever out of the path of rays, thus giving the image-forming rays direct access to the photographic plate.

Microscope Photometer
The measurement of reflectance is made possible by the microscope photometer for which the PANPHOT-POL has been provided with the necessary means of reception (see also page 42).
Camera Microscope Outfits

PANPHOT-POL (basic outfit) comprising:
- basic stand
- alternative illuminating arrangement with filament lamp
- 12 volts 60 watts, carbon arc lamp and set of filters
- microscope carrier
- vertical bellows camera 9 x 12 cm. (3½" x 4½")
- with detachable mirror reflex housing
- photographic Pol-tube FS 45, combined type
- rotator objective stage No. 37,
- first-order red compensator
- quarter-wave compensator
- regulating transformer for the filament lamp
- and resistance for the carbon arc lamp

Fittings required for work in transmitted light:
- Revolving nosepiece with compensator slot and
- individual centring devices for 5 objectives (13·35-- --)
- Five-lens diaphragm polarizing condenser No. 50 p
- with polarizing prism
- Rack and pinion focusing motion with bracket for the
- condenser (---8- --)

Complete optical equipment (transmitted light) No. B 2a
Supplementary Equipment

Detachable revolving and centring nosepiece
- for 4 objectives (13·24-- --)

Detachable revolving and centring nosepiece
- for 5 objectives (13·35-- --)

Detachable objective centring clutch with 4 objective
- changing collars (13·74-- --)
- Two-diaphragm polarizing condenser No. 50 p
- with prism polarizer
- Vertical illuminator (13·55-- --), as described on p. 26
- and illuminating attachment

UTROPAK illuminator (13·19-- --), as described on
- p. 26

For other objectives and eyepieces see pages 21 and 22.

Additional information on request.

Dimensions: 70 cm. high, top plate 60 x 120 cm.

Lined fittings can be provided in the drawers for
accommodating the various accessories for adequate storage.

PANPHOT-POL Camera Microscope for work in
transmitted and incident light with centring revolving
nosepiece for 5 objectives, vertical illuminator
and optical equipment for transmitted and
incident light, complete for 220 volts A.C.
(PANPHOT-POL (13·35-9·7) FS 45 37/50 p+IDIKY (B 2a)

PANPHOT-POL Camera Microscope for transmitted
and incident light with objective centring clutch,
vertical illuminator and optical equipment for
transmitted and incident light,
complete for 220 volts A.C.
(PANPHOT-POL (13·74-9·7) FS 45 37/50 p+IDIKY (B 2a)

PANPHOT-POL Camera Microscope for transmitted
and incident light complete with objective
centring clutch, optical equipment No. B 2a
and electrical accessories for 220 volts A.C.
(PANPHOT-POL (13·74-9·7) FS 45 37/50 p+IDIKY B 2a)

PIBON
PUBUP
PIBAC
PEZIZ
PEZUX
PEZAX
PEVET
OPORN
PABEN
IIYBE
LAZIC
LAZOD
LAZUF
NIIVR
IIICVO
IIICYU
IIICXS
IIIDAX
IIIDCB
IIIWRM
IIIMU
IMJUW
NIIUD
PIBEL
PIBIM
PIBAC
PEZIZ
PEZUX
PEZAX
PEVET
OPORN
PABEN
IIYBE
LAZIC
LAZOD
LAZUF
NIIVR
IIICVO
IIICYU
IIICXS
IIIDAX
IIIDCB
IIIWRM
IIIMU
IMJUW
NIIUD
PIBEL
PIBIM
PANPHOT-POL Camera Microscope for transmitted
and incident light with centring revolving
nosepiece for 5 objectives, vertical illuminator
and optical equipment for transmitted and
incident light, complete for 220 volts A.C.
(PANPHOT-POL (13·35-9·7) FS 45 37/50 p+IDIKY (B 2a)

PANPHOT-POL Camera Microscope for transmitted
and incident light with objective centring clutch,
vertical illuminator and optical equipment for
transmitted and incident light,
complete for 220 volts A.C.
(PANPHOT-POL (13·74-9·7) FS 45 37/50 p+IDIKY (B 2a)

PIBON
PUBUP
PIBAC
PEZIZ
PEZUX
PEZAX
PEVET
OPORN
PABEN
IIYBE
LAZIC
LAZOD
LAZUF
NIIVR
IIICVO
IIICYU
IIICXS
IIIDAX
IIIDCB
IIIWRM
IIIMU
IMJUW
NIIUD
PIBEL
PIBIM
PANPHOT-POL Camera Microscope for transmitted
and incident light with centring revolving
nosepiece for 5 objectives, vertical illuminator
and optical equipment for transmitted and
incident light, complete for 220 volts A.C.
(PANPHOT-POL (13·35-9·7) FS 45 37/50 p+IDIKY (B 2a)

PANPHOT-POL Camera Microscope for transmitted
and incident light with objective centring clutch,
vertical illuminator and optical equipment for
transmitted and incident light,
complete for 220 volts A.C.
(PANPHOT-POL (13·74-9·7) FS 45 37/50 p+IDIKY (B 2a)

PIBON
PUBUP
PIBAC
PEZIZ
PEZUX
PEZAX
PEVET
OPORN
PABEN
IIYBE
LAZIC
LAZOD
LAZUF
NIIVR
IIICVO
IIICYU
IIICXS
IIIDAX
IIIDCB
IIIWRM
IIIMU
IMJUW
NIIUD
PIBEL
PIBIM

Camera Microscope Outfits

PANPHOT-POL (basic outfit) comprising:
- basic stand
- alternative illuminating arrangement with filament lamp
- 12 volts 60 watts, carbon arc lamp and set of filters,
- microscope carrier
- vertical bellows camera 9 x 12 cm. (3½" x 4½")
- with detachable mirror reflex housing,
- photographic Pol-tube FS 45, combined type,
- rotator objective stage No. 37,
- first-order red compensator
- quarter-wave compensator,
- regulating transformer for the filament lamp
- and resistance for the carbon arc lamp,

Fittings required for work in transmitted light:
- Revolving nosepiece with compensator slot and
- individual centring devices for 5 objectives (13·35-- --)
- Five-lens diaphragm polarizing condenser No. 50 p
- with polarizing prism
- Rack and pinion focusing motion with bracket for the
- condenser (---8- --)

Complete optical equipment (transmitted light) No. B 2a
Supplementary Equipment

Detachable revolving and centring nosepiece
- for 4 objectives (13·24-- --)

Detachable revolving and centring nosepiece
- for 5 objectives (13·35-- --)

Detachable objective centring clutch with 4 objective
- changing collars (13·74-- --)
- Two-diaphragm polarizing condenser No. 50 p
- with prism polarizer
- Vertical illuminator (13·55-- --), as described on p. 24
- and illuminating attachment

UTROPAK illuminator (13·19-- --), as described on
- p. 24

For other objectives and eyepieces see pages 21 and 22.

Additional information on request.

Dimensions: 70 cm. high, top plate 60 x 120 cm.

Lined fittings can be provided in the drawers for
accommodating the various accessories for adequate storage.

PANPHOT-POL Camera Microscope for work in
transmitted and incident light complete with objective
centring clutch, optical equipment No. B 2a
and electrical accessories for 220 volts A.C.
(PANPHOT-POL (13·35-9·7) FS 45 37/50 p+IDIKY B 2a)
General Microscope Accessories

Objectives for work in transmitted light

<table>
<thead>
<tr>
<th>Designation</th>
<th>Magnification/Aperture</th>
<th>Cover glass correction</th>
<th>Type of eyepiece</th>
<th>Code word</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 2.5/0.05</td>
<td>20</td>
<td>HO</td>
<td>DO</td>
<td>PEART</td>
<td>23.2 mm. eyepieces only</td>
</tr>
<tr>
<td>P 3.2/0.12</td>
<td>35</td>
<td>HO</td>
<td>DO</td>
<td>PETA</td>
<td>Not for SM-Pol</td>
</tr>
<tr>
<td>P 3.5/0.10</td>
<td>25</td>
<td>HO</td>
<td>DO</td>
<td>PEBAY</td>
<td>also for tube length 215 mm. on vertical illuminator</td>
</tr>
<tr>
<td>P 4.3/0.15</td>
<td>27</td>
<td>HO</td>
<td>DO</td>
<td>IAYWI</td>
<td>Special type for conoscopy</td>
</tr>
<tr>
<td>P 6.1/0.16</td>
<td>17.5</td>
<td>HO</td>
<td>DO</td>
<td>PETME</td>
<td></td>
</tr>
<tr>
<td>P 10/0.25</td>
<td>5.7</td>
<td>HO</td>
<td>DO</td>
<td>PETRI</td>
<td></td>
</tr>
<tr>
<td>P 13.3/0.40</td>
<td>3.4</td>
<td>HO</td>
<td>DO</td>
<td>PEAUV</td>
<td></td>
</tr>
<tr>
<td>P 25/0.50</td>
<td>0.92</td>
<td>PO</td>
<td>D</td>
<td>PEAPS</td>
<td></td>
</tr>
<tr>
<td>P 45/0.65</td>
<td>0.60</td>
<td>PO (H0)</td>
<td>D</td>
<td>IAZYI</td>
<td></td>
</tr>
<tr>
<td>P 70/0.65</td>
<td>0.40</td>
<td>PO (D)</td>
<td>D</td>
<td>PECAZ</td>
<td></td>
</tr>
<tr>
<td>P 63/0.85</td>
<td>0.29</td>
<td>PO</td>
<td>D</td>
<td>PETIS</td>
<td></td>
</tr>
<tr>
<td>P 63/0.85</td>
<td>0.29</td>
<td>PO</td>
<td>D</td>
<td>IBAZY</td>
<td></td>
</tr>
</tbody>
</table>

Objectives for incident light

<table>
<thead>
<tr>
<th>Designation</th>
<th>Magnification/Aperture</th>
<th>Cover glass correction</th>
<th>Type of eyepiece</th>
<th>Code word</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 4.3/0.12</td>
<td>32</td>
<td>HO</td>
<td>DO</td>
<td>IATIS</td>
<td>4.0 * 0.07</td>
</tr>
<tr>
<td>P 5.6/0.15</td>
<td>26</td>
<td>HO</td>
<td>DO</td>
<td>IICVO</td>
<td>6.5 * 0.15</td>
</tr>
<tr>
<td>P 8/0.10</td>
<td>16.5</td>
<td>HO</td>
<td>DO</td>
<td>IICPS</td>
<td>13 * 0.22</td>
</tr>
<tr>
<td>P 16/0.40</td>
<td>3.4</td>
<td>HO (H0)</td>
<td>D</td>
<td>IICQV</td>
<td>20 * 0.20</td>
</tr>
<tr>
<td>P 50/0.65</td>
<td>0.66</td>
<td>HO (H0)</td>
<td>D</td>
<td>IOKRT</td>
<td>40 * 0.40</td>
</tr>
<tr>
<td>P 90/0.65</td>
<td>0.55</td>
<td>HO (H0)</td>
<td>D</td>
<td>IIOXI</td>
<td>40 * 0.40</td>
</tr>
<tr>
<td>P Oil + WPS 5/0.25</td>
<td>0.35</td>
<td>HO (H0)</td>
<td>D</td>
<td>IICU</td>
<td></td>
</tr>
<tr>
<td>P Oil + WPS 10/0.65</td>
<td>0.43</td>
<td>HO (H0)</td>
<td>D</td>
<td>IICDW</td>
<td></td>
</tr>
</tbody>
</table>

Achromatic objectives

<table>
<thead>
<tr>
<th>Designation</th>
<th>Magnification/Aperture</th>
<th>Cover glass correction</th>
<th>Type of eyepiece</th>
<th>Code word</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 4.3/0.12</td>
<td>32</td>
<td>HO</td>
<td>DO</td>
<td>IICAS</td>
<td>4.0 * 0.07</td>
</tr>
<tr>
<td>P 5.6/0.15</td>
<td>26</td>
<td>HO</td>
<td>DO</td>
<td>IICAX</td>
<td>6.5 * 0.15</td>
</tr>
<tr>
<td>P 8/0.10</td>
<td>16.5</td>
<td>HO</td>
<td>DO</td>
<td>IICPZ</td>
<td>13 * 0.22</td>
</tr>
<tr>
<td>P 16/0.40</td>
<td>3.4</td>
<td>HO (H0)</td>
<td>D</td>
<td>IICQV</td>
<td>20 * 0.20</td>
</tr>
<tr>
<td>P 50/0.65</td>
<td>0.66</td>
<td>HO (H0)</td>
<td>D</td>
<td>IOKRT</td>
<td>40 * 0.40</td>
</tr>
<tr>
<td>P 90/0.65</td>
<td>0.55</td>
<td>HO (H0)</td>
<td>D</td>
<td>IIOXI</td>
<td>40 * 0.40</td>
</tr>
</tbody>
</table>

Fluorite objectives

<table>
<thead>
<tr>
<th>Designation</th>
<th>Magnification/Aperture</th>
<th>Cover glass correction</th>
<th>Type of eyepiece</th>
<th>Code word</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Oil + WPS 5/0.25</td>
<td>0.35</td>
<td>HO (H0)</td>
<td>D</td>
<td>IICU</td>
<td>4.0 * 0.07</td>
</tr>
<tr>
<td>P Oil + WPS 10/0.65</td>
<td>0.43</td>
<td>HO (H0)</td>
<td>D</td>
<td>IICDW</td>
<td>6.5 * 0.15</td>
</tr>
</tbody>
</table>

Objectives for universal incident light

- **Objectives for universal incident light segment**
 - USE 5/0.10: 11.9 mm, DO: ICXI
 - USE 10/0.22: 14.2 mm, DO: IICZI
 - USE 20/0.33: 18.3 mm, DO: IICPS
 - USE 32/0.50: 24.6 mm, DO: IICQV
 - USE 63/0.85: 43.7 mm, DO: IICQV
 - USE 100/1.3: 91.9 mm, DO: IICQV

Objective changing collars, singly

- **PIZUT**

1. **HO** = Huygens eyepiece, **P Oil** = Periplanetic eyepiece
2. **D0** = with cover glass 0.17 ± 0.05 mm thick, **DO** = with cover glass, **D0** = for use with or without cover glass. D0 = requirement of minimal cover glass variations of 0.17 ± 0.01 mm. or accurate adjustment of the objective corrections meets.
3. These working distances are valid for examining specimens without cover glass.
4. Magnifications: 4.0 * 0.07
5. Iris diaphragms are as follow: magnification = depend on the sector of a segment.
6. Iris dia- phragm = 8.0 * 0.15
7. Iris dia- phragm = 12 * 0.22
8. Iris dia- phragm = 20 * 0.20
9. Iris dia- phragm = 40 * 0.40
Eyepieces

The type of eyepiece best suited for use with the various types of objectives is indicated in the opposite table where HO is a Huygens type and PO a Periplanonic eyepiece.

All eyepieces with built-in cross lines or a micrometer scale have an adjustable eyecup for accurate focusing. The eyepiece cross lines are always correctly oriented in the microscope tube by means of a lateral lug. The tube adapter included in all microscope outfits enables standard eyepieces of 23.2 mm. dia. to be used in the polarizing tubes for 30 mm. eyepieces.

For the wearers of glasses we recommend high-point eyepieces with which the exit pupil is at a greater distance above the eyecup so that in spite of the longer viewing distance the whole of the image field can still be observed, thus making it unnecessary to remove the eyeglasses for microscopic observation.

Eyepiece Micrometers and Graticules

For use with the eyepieces specified above the following graticules can be supplied. They are available with and without metal mount. The latter type is required for placing the graticule on the fixed field-of-view diaphragm inside standard eyepieces whereas the measuring eyepieces with focusing eyecups require the graticule discs without metal mount.

<table>
<thead>
<tr>
<th>Eyepiece micrometers</th>
<th>5 mm. with 100 intervals</th>
<th>10 mm. with 100 intervals</th>
<th>10 mm. with 200 intervals</th>
<th>Line cross</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unmounted</td>
<td>mounted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCATZ</td>
<td>OCUF1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCAS Y</td>
<td>OC UME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCBAC</td>
<td>OEEFK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCAM T</td>
<td>OFPL A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micrometer scale with line cross</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mm. with 100 intervals</td>
</tr>
<tr>
<td>8 mm. with 80 intervals</td>
</tr>
<tr>
<td>with diaphragms 9.2 mm.</td>
</tr>
<tr>
<td>10 mm. with 100 intervals</td>
</tr>
<tr>
<td>with diaphragms 13.5 mm.</td>
</tr>
<tr>
<td>unmounted</td>
</tr>
<tr>
<td>OCBUH</td>
</tr>
<tr>
<td>OCCAD</td>
</tr>
<tr>
<td>OCBIF</td>
</tr>
<tr>
<td>OCOB G</td>
</tr>
<tr>
<td>IBXTI</td>
</tr>
<tr>
<td>OCCEF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eyepiece net micrometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 x 5 mm. divided in squares</td>
</tr>
<tr>
<td>0.5 x 0.5 mm. each</td>
</tr>
<tr>
<td>10 x 10 mm. divided in squares</td>
</tr>
<tr>
<td>0.5 x 0.5 mm. each</td>
</tr>
<tr>
<td>10 x 10 mm. /squares 1 x 1 mm.</td>
</tr>
<tr>
<td>10 x 10 mm. /squares 2 x 2 mm.</td>
</tr>
<tr>
<td>Set of net micrometers</td>
</tr>
<tr>
<td>10 x 10 mm. /squares 0.075 mm.</td>
</tr>
<tr>
<td>10 x 10 mm. /squares 0.2 mm.</td>
</tr>
<tr>
<td>10 x 10 mm. /squares 0.5 mm.</td>
</tr>
<tr>
<td>unmounted</td>
</tr>
<tr>
<td>OC ALS</td>
</tr>
<tr>
<td>OC NET</td>
</tr>
<tr>
<td>I CKRI</td>
</tr>
<tr>
<td>OCTOK</td>
</tr>
<tr>
<td>I C LTI</td>
</tr>
<tr>
<td>OCA HAJ</td>
</tr>
<tr>
<td>I CMV I</td>
</tr>
<tr>
<td>OCH OM</td>
</tr>
<tr>
<td>OCAR X</td>
</tr>
<tr>
<td>OC I KT</td>
</tr>
</tbody>
</table>

WRIGHT Universal Eyepiece

This special eyepiece is designed for use with the top analyser and takes for positioning in its intermediate plane compensation wedges, half-shadow plates and wedges. It can only be mounted on vertical (photographic) tubes and not the regular inclined observation eyepiece tubes.

Specification:

Wright universal eyepiece with field-of-view iris diaphragm, focusing eyecups, compensator slot, and rulings with index for the top analyser. Top analyser with 360° graduation reading to 1°.

Plates fitting the Wright eyepiece slot:

1. Combination quartz wedge after Wright with orientation scale
2. Quartz wedge 1st-4th order
3. Quartz double wedge after Wright
4. Quartz-gypsum compensator after Johanssen
5. Half-shadow plate after Nakamura
6. Half-shadow wedge after Mace de Lépinay
7. Sale's double plate
8. For a detailed description of the compensators, half-shadow plates etc. see pages 34-36.
A. Polarizing Condensers *)

Polarizing condenser No. 57 in cylindrical sliding mount, with swing-out top component, N.A. 0.90; the top may be replaced by a system of N.A. 1.40. Aperture iris diaphragm and removable filter polarizer in rotating mount with markings of 90° intervals (as contained in SM-POL basic outfit)

Three-lens polarizing condenser No. 54, on dovetail slide, with swing-out top component, N.A. 0.90, which may be replaced by a system of N.A. 1.40. Aperture iris diaphragm and removable filter polarizer in rotating mount with markings of 90° intervals (as contained in LABORLUX-POL basic outfit)

Five-lens two-diaphragm polarizing condenser No. 50 f, on dovetail slide, with swing-out top component, N.A. 0.85; the top may be replaced by a system of N.A. 1.40. Aperture iris diaphragm and focusing illuminated field diaphragm; removable filter polarizer in rotating mount with graduation in 5° intervals (as contained in DIALUX-POL and ORTHOLUX-POL basic outfits)

Five-lens two-diaphragm polarizing condenser No. 50 p, as under PEIV but with prism polarizer (as contained in the PANPHOT-POL basic outfit)

B. Bright Field Condensers *)

No. 76 Two-diaphragm bright field condenser with swing-out top component, N.A. 0.95, aperture and field-of-view diaphragms, on dovetail slide

No. 77 as No. 76 but in cylindrical sliding mount

Interchangeable condenser top component N.A. 1.40

No. 80 Two-lens condenser with swing-out top component, N.A. 0.90, with iris diaphragm and filter holder, on slide

No. 81 as No. 80 but in cylindrical mount

C. Dark Field Condensers *)

No. 82 Immersion dark field condenser D 1.20 A in centring mount, on dovetail slide, in case

No. 83 as No. 82 but in cylindrical sliding mount

for use with these condensers the following objectives with built-in iris diaphragm are particularly recommended:

Achromatic oil immersion Oil 100/1.30-1.10

Fluorite oil immersion Fl Oil 95/1.32-1.10

No. 84 Dry dark field condenser D 0.80, in centring mount, on dovetail slide, in case

No. 85 as No. 84 but in cylindrical sliding mount

Special objective for use with D 0.80:

Achromatic objective 63/0.85 with iris diaphragm

*) Condenser in dovetail slide fit the microscope LABORLUX-POL, DIALUX-POL, EPILUX-POL, ORTHOLUX-POL and PANPHOT-POL.

Condensers in cylindrical sliding mount fit the SM-POL microscope only.

D. Phase Contrast Condensers

See page 28.
The VARIOCOLOR is an auxiliary device to the microscope condenser enabling the colour of the microscopic field of view to be varied continuously. Thus colour contrast can be achieved for stained and unstained microscopic specimens for more convenient detection of image details and diagnosis."

*) It must be pointed out that strictly monochromatic light is not provided by the VARIOCOLOR attachment. Light of a narrow spectral range can only be expected from a monochromator and for many practical uses also from spectral filters (see pages 55–57).

Vertical Illuminator

All LEITZ polarizing microscopes (with the exception of the simple SM-POL stand) are arranged for taking a vertical illuminator to make these instruments fully suitable for examinations in incident polarized light.

The vertical illuminator is available in two models, i.e. with built-in light-source and horizontal dovetail slide fitting the microscopes LABORLUX-POL and DIALUX-POL and also with broad fitting the vertical dovetail holder on the ORTHOLUX-POL and PANPHOT-POL with which the necessary illumination is provided by the built-in light sources.

As light deflecting means the vertical illuminator incorporates an optical changing device a plane glass plate and a compensating prism (tropezoid after Berek), which deflects the illuminating rays without causing any change in their polarization condition. The rotation of the detachable polarizer prism can be read to 0.25°. A collecting lens, a vertically adjustable aperture diaphragm, an illuminated field diaphragm and a horizontally adjustable collimator ensure perfect guidance of the illuminating rays. Disturbing reflections and glare can be effectively eliminated by making use of the built-in half-stop or a set of central stops arranged on a sliding holder. The objectives are fitted to the precision objective changing clutch with three-point centring arrangement. Special requirements have to be met if the microscope photometer for measuring reflectance is to be combined with the above equipment (see page 42).

Specifications:

VARIOCOLOR attachment with intermediate adapter LUYOX fitting the polarizing condensers Nos. 50 and 54	LUXOW-LUYOX
VARIOCOLOR attachment with intermediate adapter LUYOY fitting the polarizing condenser No. 57	LUXOW-LUYOY
VARIOCOLOR attachment with intermediate adapter LUYAT fitting the two-diaphragm condensers Nos. 76 and 77	LUXOW-LUYAT

Vertical Illuminator for the DIALUX-POL and LABORLUX-POL microscopes

Vertical illuminator on horizontal changing slide, compensator slot set at an angle of 45°, rigidly attached lamp, 6 volts 15 watts, Berek compensating prism on a rapid changing axis with plane glass plate, horizontally adjustable collimator, illuminated field iris diaphragm, detachable rotating prism polarizer, central stop slide, half-stop aperture iris diaphragm with vertical adjustment, illuminating lens and 5 objective changing collars (P. 55 – 35).

If not available, the regulating transformer 110/220 volts for the 6 volt 15 watt lamp must be provided.

The illuminator equipment PEDAB can, if desired, be supplied without the changing slide with a set of central stops. Vertical illuminator, as described above, but without the central stop changing slide.

The vertical illuminator can be easily adopted for use in conjunction with a separate light source (sodium vapour lamp, monochromator etc.) by screwing a special collecting lens in place of the lamp unit.

Special requirements have to be met if the microscope photometer for measuring reflectance is to be combined with the above equipment (see page 42).

Immersio...

In incident immersion the contrast can be improved much more effective with the use of immersion objective with the usual immersion oil or with the wide immersion oil.

However, for outstanding immersion with immersion oil:

PEDAB	RESEV
PEHAF	Immersion C
Immersion C	Immersion C

Our dry immersion objective:

1. P 4.3/0.12

2. P 8/0.19

3. P 16.5/0.40

Can be ordered with immersion oil or also for immersion oil. Can be fitted to the microscope described above by the necessary immersion pieces.

(a) Immersion objective with immersion oil
(b) Immersion objective with immersion oil
(c) Immersion objective with immersion oil
Immersion Caps for Microscopy in Incident Light

In incident light microscopy image quality as regards freedom from reflections and maximum contrast can be greatly improved with the aid of immersion caps. This method is particularly effective with methylene iodide immersions in place of the usual oil immersions. The ordinary oil immersion objectives have proved wholly satisfactory for the wide field of applications as regards the microscopic examination of peat and soft brown coal.

However, for studying hard brown coal, as one outstanding example, the methylene iodide immersion will be found superior to the ordinary oil immersion.

Our dry objectives for incident light

P 4.3/0.12
P 8 /0.18
P 16.5/0.40

can be supplied with immersion caps for cedar wood oil or synthetic oil (refractive index 1.515) and also for methylene iodide. These caps can also be fitted subsequently to existing objectives of the above types except those of older construction. Best results with these objectives will be obtained when they are used in conjunction with 10x eyepieces.

(a) Immersion caps with front plate for oil n = 1.515

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 4.3/0.12</td>
<td>IKDUJ</td>
</tr>
<tr>
<td>P 8 /0.18</td>
<td>IKEHN</td>
</tr>
<tr>
<td>P 16.5/0.40</td>
<td>IKELS</td>
</tr>
</tbody>
</table>

(b) Immersion caps with front plate for methylene iodide n = 1.74

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 4.3/0.12</td>
<td>IKDAD</td>
</tr>
<tr>
<td>P 8 /0.18</td>
<td>IKDEF</td>
</tr>
<tr>
<td>P 16.5/0.40</td>
<td>IKDOH</td>
</tr>
</tbody>
</table>

ULTROPAK Incident Light Illuminator

This equipment furnishes dark field illumination for the examination of opaque specimens. It is equally suitable for the study of inclusions, etch figures and surface structures as well as examinations on living objects in biological and medical work. The supplementary polarizer used in conjunction with the analyzer in the top of the microscope causes an image formation solely by the light rays irregularly reflected and depolarized on the structures of the specimen. Alternative illumination by transmitted light and also combined illumination can be established by the simultaneous use of a substage condenser.

Constructional features

The ULTROPAK illuminator consists of a metal housing with built-in inclined deflecting mirror with central aperture, illuminating attachment and bayonet changing mount for a set of special UO objectives with vertically adjustable ring condensers. The arrangement of the various components and the path of rays is shown in the above illustration.

The most favourable adjustment of the condenser depends on the kind of specimen and particularly on its surface structure. A graduation enables condenser settings to be read for future reference thus facilitating the later examination of materials of a similar surface structure requiring the same condenser setting.

A filter polarizer can be readily inserted in a holder rotating through 90°. With the ULTROPAK for the LABORLUX-POL and DIALUX-POL microscopes the centring and horizontally adjustable illuminant with 6 volt 15 watt lamp is rigidly attached, whereas with the ULTROPAK model for the ORTHOLUX-POL and PANPHOT-POL use is made of the built-in light sources of these instruments. The set of ULTROPAK objectives comprises systems with long working distance from 3.8x up to 100x initial magnification.

Universal application is ensured not only by the suitably graded magnifications of the various objectives but also by the availability of objectives with the numerical apertures most frequently used in practical work. The UO objectives differ from ordinary microscope objectives in their bayonet mount and the ring condenser attached to it.
The low-power ULTROPAK objectives are fitted with a ring condenser, specially patented in its focal length to that of the objective. Medium and high-power objectives (from 22x upwards) have a double ring condenser which is identical and could be interchanged on various systems. For practical use, however, it is recommended to purchase each objective complete with condenser to have it always ready for use and for rapid changeover from one objective and one magnification to another.

The objectives with their annular condensors around them are externally designated by engraved rings fitted to their metal mounts. Special lighting effects can be brought about by the use of adjustable sector diaphragms and colour fillers fitting into the filter slot of the ULTROPAK light entrance tube. Drop-in funnel stops of various sizes can be used in the objectives proper if it is desired to increase the depth of focus. However, stopping down should not be carried too far since this will adversely affect to a certain extent the resolving power.

For examining moist material or materials in liquids, surface reflections must be eliminated to ensure perfect images. This is achieved by special dipping cones designed for the UO dry objectives and immersion caps for the UO immersion systems.

ULTROPAK objectives

<table>
<thead>
<tr>
<th>UO objectives</th>
<th>Magnif./Aperture</th>
<th>Free working distance</th>
<th>Type of objective</th>
<th>Ring condenser</th>
<th>Supplementary equipment</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry objectives</td>
<td></td>
<td></td>
<td></td>
<td>6.5</td>
<td>0.17</td>
<td>AMEEI</td>
</tr>
<tr>
<td>11 A. (0.259)</td>
<td></td>
<td></td>
<td></td>
<td>K 22 — 100</td>
<td>HOPPO</td>
<td>EEEA</td>
</tr>
<tr>
<td>W 50.0</td>
<td>0.5</td>
<td>PO</td>
<td>K 22 — 100</td>
<td>AEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 75.0</td>
<td>0.45</td>
<td>PO</td>
<td>K 22 — 100</td>
<td>AEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 90.0</td>
<td>0.42</td>
<td>PO</td>
<td>K 22 — 100</td>
<td>AEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 75.0</td>
<td>0.51</td>
<td>PO</td>
<td>K 22 — 100</td>
<td>AEEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 75.0</td>
<td>0.48</td>
<td>PO</td>
<td>K 22 — 100</td>
<td>AEEM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dipping cones and immersion caps

<table>
<thead>
<tr>
<th>Dipping cones and immersion caps</th>
<th>Remarks</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>for dry objective UO 3.8</td>
<td>AEE</td>
</tr>
<tr>
<td>5</td>
<td>for dry objective UO 5</td>
<td>AEE</td>
</tr>
<tr>
<td>6.5</td>
<td>for dry objective UO 6.5</td>
<td>AEE</td>
</tr>
<tr>
<td>11</td>
<td>for dry objective UO 0.17</td>
<td>AEE</td>
</tr>
<tr>
<td>11 I. A. (0.259)</td>
<td>for dry objective UO 0.17</td>
<td>AEE</td>
</tr>
<tr>
<td>22 I. A. (0.259)</td>
<td>for dry objective UO 0.17</td>
<td>AEE</td>
</tr>
<tr>
<td>320.5</td>
<td>for drop-in funnel stop only with immersion</td>
<td>AEO</td>
</tr>
<tr>
<td>1000.0</td>
<td>for drop-in funnel stop only with immersion</td>
<td>AEO</td>
</tr>
</tbody>
</table>

Dipping cones

Dipping cones

<table>
<thead>
<tr>
<th>Dipping cones</th>
<th>Remarks</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>for dry objective UO 3.8</td>
<td>AEE</td>
</tr>
<tr>
<td>5</td>
<td>for dry objective UO 5</td>
<td>AEE</td>
</tr>
<tr>
<td>6.5</td>
<td>for dry objective UO 6.5</td>
<td>AEE</td>
</tr>
<tr>
<td>11</td>
<td>for dry objective UO 0.17</td>
<td>AEE</td>
</tr>
<tr>
<td>11 I. A.</td>
<td>for dry objective UO 0.17</td>
<td>AEE</td>
</tr>
<tr>
<td>22 I. A.</td>
<td>for drop-in funnel stop only with immersion</td>
<td>AEO</td>
</tr>
<tr>
<td>320.5</td>
<td>for drop-in funnel stop only with immersion</td>
<td>AEO</td>
</tr>
<tr>
<td>1000.0</td>
<td>for drop-in funnel stop only with immersion</td>
<td>AEO</td>
</tr>
</tbody>
</table>

Ring condenser for relief observations

Relief condenser with one intermediate collar and a funnel stop, as required, without objective, in case (state type of UO objective with which the condenser is to be used)

The following supplementary items are available

- Intermediate condenser with funnel stop for objective UO 0.8
- Intermediate condenser with funnel stop for objective UO 5
- Intermediate condenser with funnel stop for objective UO 6.5
- Intermediate condenser with funnel stop for objectives UO 11-50

Case for storing a relief condenser complete with all intermediate collars and funnel stops

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULTROPAK illuminator on bracket fitting the microscopes ORTHOLUX-POL and PANPHOT-POL</td>
<td></td>
</tr>
<tr>
<td>ULTROPAK illuminator for DIALUX-POL and LABORLUX-POL with rigidly built-in inclined mirror with central aperture as light guidance element for the ring condenser of the UO objectives, bayonet changing mount for the latter, rigidly attached 15 volt lamp with slot for the accommodation of filters, sector diaphragms and a slip-in rotating filter polarizer (7,22 — 35), in case ULTROPAK illuminator, as described, but without lamp unit, for use on the ORTHOLUX-POL (1316 — —) ULTROPAK illuminator, as described, but with light-screening sleeve in place of the lamp unit, for use on the PANPHOT-POL (1319 — —) Case for PABAM or PABEN</td>
<td></td>
</tr>
</tbody>
</table>

Accessories

First-order red compensator in special mount filling the holder of the ULTROPAK KARAN

The application of a separate light source in place of the 6 volt 15 watt unit requires an attachable reflector PEHEG

Set of 6 drop-in funnel stops to increase the depth of focus of UO objectives AXUEE
Technical Description

The phase contrast equipment consists of the Heine condenser with vertical adjustment of the built-in mirror body (of 0.25–0.70 N.A.) and a screw-on immersion cap for examinations with immersion objectives whereby the condenser aperture is raised to 0.50 up to 1.40. The vertical adjustment yields a continuous change of illumination from bright field to phase contrast and dark field and vice versa.

The equipment requires special phase contrast (Pv) objectives as listed at the right with suitably selected apertures and magnification factors. These objectives can be used on a revolving nose-piece with built-in centring devices or on objective centring clutch.

The LEITZ phase contrast equipment is supplied in two models differing in the form of their interchange fitting. The phase contrast condenser with dovetail slide fits the microscopes LABORLUX-POL, DIALUX-POL, ORTHOLUX-POL and PAN-PHOT-POL while for the SM-POL the condenser is supplied with a cylindrical sliding mount.

Phase contrast objectives

<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
<th>Magnification/Opening</th>
<th>Free working distance mm.</th>
<th>Cover glass thickness</th>
<th>Code word</th>
<th>Designed with absorption set %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry system</td>
<td>Pv 10/0.25</td>
<td>5.8</td>
<td>PO</td>
<td>D</td>
<td>O</td>
<td>PHALZ</td>
</tr>
<tr>
<td>Dry system</td>
<td>Pv 20/0.45</td>
<td>7.0</td>
<td>HO (PO)</td>
<td>D</td>
<td>PHANC</td>
<td>n</td>
</tr>
<tr>
<td>Dry system with specially long working distance</td>
<td>Pv Apo L 40/0.70</td>
<td>0.38</td>
<td>PO</td>
<td>DI</td>
<td>PHASG</td>
<td>n</td>
</tr>
<tr>
<td>Dry system with specially long working distance</td>
<td>Pv Apo L 63/0.70</td>
<td>0.35</td>
<td>PO</td>
<td>DI</td>
<td>PHERG</td>
<td>n</td>
</tr>
<tr>
<td>Water dipping objective</td>
<td>Pv WE 20/0.60</td>
<td>0.05</td>
<td>PO</td>
<td>O</td>
<td>PHESh</td>
<td>n</td>
</tr>
<tr>
<td>Water dipping objective</td>
<td>Pv WE 50/0.70</td>
<td>0.05</td>
<td>PO</td>
<td>O</td>
<td>PHEWL</td>
<td>n</td>
</tr>
<tr>
<td>Water dipping objective</td>
<td>Pv WE 80/0.90</td>
<td>0.06</td>
<td>PO</td>
<td>O</td>
<td>PHEYN</td>
<td>n</td>
</tr>
<tr>
<td>Oil immersion</td>
<td>Pv FL Oil 70/1.3</td>
<td>0.20</td>
<td>PO</td>
<td>D</td>
<td>O</td>
<td>PMELB</td>
</tr>
<tr>
<td>Oil immersion</td>
<td>Pv Apo Oil 90/1.5</td>
<td>0.12</td>
<td>PO</td>
<td>D</td>
<td>O</td>
<td>PHATH</td>
</tr>
</tbody>
</table>

1) HO = Huygens eyepiece, PO = periplanatic eyepiece recommended.
2) D = for use with cover glasses 0.17 ± 0.02 mm. thick.
3) O = without cover glass, DO = with and without cover glass.
4) DI = cover glass thickness 0.17 ± 0.02 mm. to be strictly adhered to.
5) n = normal absorption for positive phase contrast.
6) h = high absorption for intensified phase contrast.
7) H = high absorption for negative phase contrast.
Equipment for phase contrast work

Heine phase contrast condenser with rack and pinion vertical adjustment for the mirror body and screw-on immersion cap
Filter holder with daylight and photographic filter
Auxiliary magnifier (not required for microscopes with Bertrand lens)
Case for storing the condenser and 4 objectives
Phase contrast condenser Nr. 74 on slide
Phase contrast condenser Nr. 75 in cylindrical mount

Accessories

Revolving nosepiece with 4 centring devices to hold matched Ph objectives, with horizontal dovetail slide for DIALUX-POL and LABORLUX-POL (734 ---) PEZUC
Revolving nosepiece with 4 centring devices to hold matched Ph objectives, with vertical dovetail bracket for ORTHOLUX-POL and PANPHOT-POL (1334 ---) PEZI

LEITZ Phase Contrast Equipment for Examination in Incident Light
(for use on ORTHOLUX-POL and PANPHOT-POL)

The most important field of application of phase contrast microscopy in incident light is the representation of the fine surface pattern of materials. To those engaged in metallurgical, mineralogical, petrographic or ceramics research or routine examinations will often obtain quick and surprisingly revealing results when studying corrosion, polishing, etching and other processes in phase contrast illumination.

Technical Description

The vertical illuminator is of a modified design to meet the special requirements of phase contrast image formation. It includes a drum-shaped housing with rotating rear component carrying the ring diaphragms for the various magnifications and an iris diaphragm for bright field illumination. Moreover, an arrangement is incorporated, which allows of a direct comparison between the phase contrast image and the bright field appearance of the specimen.

Specification

Vertical illuminator for phase contrast with bright-field-illumination, revolving nosepiece with 5 Ph objectives with built-in phase rings for 50x, 100x, 200x, 500x and 1000x total magnification, drum-shaped housing with rotating diaphragm carrier for phase contrast and bright field illuminator, on bracket for ORTHOLUX-POL
Vertical illuminator, as above, but inclusive of illuminating tube for PANPHOT-POL
Two eyepieces 10x with adjustable eyecups, one with reticle indicating the photographic image size
Auxiliary magnifier
Tilting object holder for levelling the specimen

Attachable mechanical stage
Object marker
Hand press

Attachable mechanical stage

The mechanical stage for displacing the specimen horizontally in two directions at right angles to each other can be fitted to the rotating stages of the polarizing microscopes on which it is secured by means of a screw. It is of a flat design with the controls set at an angle so that even in conjunction with a quintuple objective nosepiece no collision with objectives is to be feared. The traversing area is 40 x 20 mm., and scales and verniers allow of reading the movement correct to 0.1 mm. Attachable graduated mechanical stage, in case of a direct comparison between the bright-field appearance of the specimen.

Object marker

The object marker resembles a microscope objective but in place of optics it is fitted with a rotating, slightly excentrically set diamond tip. It fits the revolving objective nosepiece and also the objective centring clutch and by rotating its top it scribes a circle on the cover slip of a microscopic specimen so that an interesting point is clearly marked for later quick focusing and demonstration. Object marker

Object slides

100 object slides 48 x 28 mm. (Giessen size) of glass with bevelled edges
100 object slides 48 x 28 mm. with unbevelled edges
100 object slides 76 x 28 mm. (English size) of glass with bevelled edges
100 object slides 76 x 28 mm. with unbevelled edges
Metal object slide 48 x 36 mm.
Metal object slide 76 x 32 mm.

Hand press for opaque specimens

The hand press serves for levelling opaque polished specimens on an object slide with plasticine to have the surface to be examined at right angles to the optical axis of the microscope. The height of a series of specimens can be uniformly adjusted by a stop screw on the press, so that all specimens can be rapidly placed on the microscope stage and examined without any major adjustments being necessary except for a slight correction on the micrometer focusing. Hand press with adjustable stop

Cover glasses

100 cover slips, square 15 x 15 mm.
100 cover slips, square 18 x 18 mm.
100 cover slips, square 20 x 20 mm.
100 cover slips, rectangular 77 x 21 mm.
100 cover slips, circular, 15 mm. dia.
100 cover slips, circular, 18 mm. dia.
100 cover slips, circular, 20 mm. dia.
Cover glass thickness gauge (1 interval = 0.00 mm.)
Immersion oil for oil immersion objectives, 10 g bottle
Combination bottle for immersion oil and xylol, with glass rod
The universal rotating stages are supplied in three models which differ in the number of their axes or directions of rotation and have received their designations accordingly: UT2, UT4 and UT5. The UT2 stage with only two axes of rotation is primarily intended for teaching purposes, but certain mineralogical routine work is also within its scope. This includes the determination of the refractive index of mineral grains after the embedding method or morphological and crystal-optical measurements on crystals with the aid of the hollow glass sphere after Waldmann (see pages 30 and 36).

For the optical investigation of crystals after the Fedorow method the UT4 and UT5 stages fulfill all the requirements. The latter surpasses the former in that it allows of setting the second plane of symmetry immediately after the first one has been found, thus facilitating the measuring process.

All universal rotating stages have a practical device for exchanging and mounting the thin sections and allow of a simple and rapid adjustment of the section surface into the intersection of the axes of rotation. For the analysis of specimen structures it is advantageous to equip the stages UT4 and UT5 with the auxiliary angular slide (FEGFU) for parallel movement of the specimen which, however, necessitates a special mount of the upper segment (FEGSE).

For the demonstration of the principle underlying the construction and use of the universal rotating stages indicatrix models of optically uniaxial and biaxial crystals can be accommodated on all types of UT stages where they take the place of the inner stage plate.

The application of the universal rotating stage methods necessitates the use of special UM objectives which are corrected for a uniform working distance (1.5 mm.) in relation to the UT stage segment and supplied with built-in iris diaphragm. The systems of higher numerical aperture, UM 20/0.33 and UM 32/0.30 call for a special condenser cap and are ideal for the determination of directions of reference in crystallographic work.

Specifications

Universal rotating stage UT 5 (5 axes of rotation), on centring base, with pair of segments \(\eta_D = 1.55 \), in case

Universal rotating stage UT 4 (4 axes of rotation), on centring base, with pair of segments \(\eta_D = 1.55 \), in case

Universal rotating stage UT 2 (2 axes of rotation), on centring base, with pair of segments \(\eta_D = 1.55 \), in case

Interchangeable pair of segments \(\eta_D = 1.55 \) (as included above)

Interchangeable pair of segments \(\eta_D = 1.649 \)

Interchangeable pair of segments \(\eta_D = 1.516 \)

Segments with other refractive index on request.

For the analysis of structures of materials with the aid of the UT 4 or UT 5 stage the following is required:

Parallel guiding slide after Schmidt, with mm. scale, for systematically displacing the thin section under the segment

The Schmidt slide necessitates a modification to the normal mount of the upper segments, extra for each segment

For checking the thickness of cover glasses we recommend:

Cover glass thickness gauge (reading to 0.01 mm.)

For general examination to thin sections on the UT stage without upper segment:

Auxiliary stage clip

Objectives for universal stage methods

Built-in iris diaphragm, free working distance to top of segment 1.5 mm., magnification and aperture values apply to segment \(\eta_D = 1.55 \)

UM 5/0.10

UM 10/0.22

UM 20/0.33

UM 32/0.30

Auxiliary setting objective

Objective changing ring (required for each objective when the microscope to be used is equipped with an objective centring clutch)

Supplementary condenser for UM 20/0.33 and UM 32/0.30, taking the place of the normal swing-out condenser top

(a) for UT 5

(b) for UT 4 and UT 2
LEITZ Universal Stage Conoscope

Special equipment has been designed to supplement any model of the universal rotating stage for conoscopic work. The following items are required to build up a universal stage conoscopic:

Condenser on dovetail slide with sleeve taking the polarizer (for use in place of the normal microscope condenser) and objective UMK 32/0.60

Upper segment with small hemisphere (11.5 mm. dia.) refractive index 1.516

Upper segment with small hemisphere (11.5 mm. dia.) refractive index 1.554

Upper segment with small hemisphere (11.5 mm. dia.) refractive index 1.649

The lower segment is the same as that supplied for the UT stages:

Lower segment with hemisphere 25 mm. dia., refractive index 1.516

Lower segment with hemisphere 25 mm. dia., refractive index 1.554

Lower segment with hemisphere 25 mm. dia., refractive index 1.649

Objective UMK 32/0.60

Objective UMK 50/0.60

(Special system for the conoscopic examination of small objects)

The Waldmann Hollow Glass Sphere

This accessory to the universal rotating stage which can be mounted on our polarizing microscopes is for the morphological and crystal-optical examination of crystals ranging in diameter from 1 to 11 mm. It consists of a hollow sphere of optical glass, 27 mm. in diameter and with a 12 mm. bore. The space inside this sphere is filled up free from air bubbles with a suitable immersion fluid. The closure cap, with the object holder in place, seals the sphere without extending beyond its surface at any point. This renders the sphere capable of being turned under the microscope without limitation in every direction.

Advantages of the hollow glass sphere:

- Transparent crystals of any to the stated maximum size can easily be brought into the centre of the sphere, where they can be examined without the risk of damage, and without preparatory measures.

- In the examination of thin sections, as has hitherto been customary, an initial position unfavourable for many components of the section is given by the plane of the section. By contrast, the sphere with its unlimited range of rotation allows a favourable initial position of the grain to be chosen, in addition to which the object can also be transposed on its holder.

- The angular space remaining accessible for observation in a plane of symmetry of the cop (about 26°), is considerably larger than in ordinary segments, in which a spherical belt of less than 90° only can be fully utilized for transmitted light microscopy.

- The conoscopic examination method can also be employed at any time.
Three different types of closure caps are available for the Waldmann hollow glass sphere:

1. Closure cap with fixed glass pin on which the object to be examined is cemented.
2. Closure cap with radially movable glass pin allowing the object to be brought into the centre of the hollow sphere.
3. Closure cap with cross pincers for crystals of 5-11 mm. dia. The pincers are opened and closed by means of a key.

Specification:
Waldmann hollow glass sphere, with long, adapter ring and holder for use on UT stage, key for vertical adjustment of closure caps, 2 wooden rings as supports for the sphere, centring gauge and 3 closure caps, in case.

Universal Rotating Stage UTR 2 for Opaque Specimens

Universal rotating stage UTR 2 (as suggested by Prof. Ehrenberg) is a special model to meet the requirements of the study of structure distribution in ores and metals, the structure of minerals etc. for which only opaque polished specimens are available.

Specification:
Universal rotating stage UTR 2 for polished opaque specimens, with 2 rotary axes A and A', angle graduations with vernier reading to 0.1°, vertical stage adjustment, built-in mechanical stage with cross motion range 20 x 15 mm. with scales and clamping screws, 3 interchangeable inserts with apertures 5 x 5, 10 x 10 and 15 x 15 mm., 2 object clips and 2 knurled screws for fixing the equipment to the microscope stage including centring base, in case.

Accessories for Universal Stage Methods

For the evaluation of the measurements obtained with the aid of the universal stages the following accessories are available:
- Angle-true stereographic net ruling (after Wulff) with rotating device (after M. Reinhard) for the tracing paper
- Angle-true stereographic net ruling, single sheet
- Surface-true net ruling (after Lambert) with rotating device (after M. Reinhard) for the tracing paper
- Surface-true net ruling, single sheet

For the demonstration and explanation of the universal stage methods and the operations involved we supply, as suggested by M. Reinhard, the following indicatrix models of crystals which are accommodated on the universal stage after the stage inset has been removed:
- Indicatrix model of an optically biaxial crystal
- Indicatrix model of an optically uniaxial crystal

(For details on the universal stage refractometer see p. 36)
Quarter-wave plate in subparallel position for $\lambda = 589 \text{ m}\mu$

Quarter wave plate in subparallel position for $\lambda = 540 \text{ m}\mu$

Green filter for $\lambda = 540 \text{ m}\mu$

Quarter-wave plates in subparallel position for shorter wave lengths are quoted for upon request.

The above plates can also be slightly turned away from their normal orientation, the range covered amounting to a few degrees. They are intended for the exact measurement of path differences after the Sénarmont method for which a revolving and accurately graduated analyser as well as a half-shadow device (Wright eyepiece with half-shadow plates) are required.

Johannsen quartz-gypsum compensator

The quartz wedge is combined with a gypsum plate so selected in its thickness that the path difference obtained on the edge of the wedge is 0. The same slide mount holds, separated from the wedge, a first-order red plate.

This accessory can only be used in conjunction with an objective centring clutch.

Johannsen quartz-gypsum compensator

The quartz wedge is combined with a gypsum plate so selected in its thickness that the path difference obtained on the edge of the wedge is 0. The same slide mount holds, separated from the wedge, a first-order red plate.

This accessory can only be used in conjunction with an objective centring clutch.

Berek rotatory compensator (up to 4 orders)

This equipment is based on the principle of the Biot-Bravais compensator which it surpasses by its considerably larger measuring range (4 orders). The values measured can be easily evaluated. For determining small and medium path differences this compensator is much more sensitive than those designed on the Babinet principle. The Berek compensator is supplied with directions, tables and calibration for 3 wave lengths as well as the conventional optical centre of gravity for white light.

Berek rotatory compensator for more than 3 orders

(extra measuring range required when ordering)

Mica compensator with quarter-wave plate (elliptical compensator), fitting the tube slot, for wave length 589 m\mu and for use in conjunction with a rotating analyser

Mica compensator, as above, for wave length 540 m\mu

Green filter for wave length 540 m\mu

Mica compensators for other wave lengths on request.
Determination of the absolute optical character with the various types of compensators. The arrows show the direction of the displacement of the isochromates with increasing path variation in the compensator.

The following compensators are available for use in the tube slot of the polarizing microscopes:

- First-order red compensator, in metal slide
- Quarter-wave compensator, in metal slide
- First-order plate in subparallel position

Specimens of very weak double refraction can be successfully examined for their direction of vibration with the aid of the first-order plate in subparallel position, which in this instance is more sensitive to slight colour variations than the ordinary first-order plate in diagonal position. The plate proper is slightly rotatable in its metal slide (a few degrees) in order to adjust it to the most favourable effect.
Quarter-wave plate in subparallel position for $\lambda = 589 \text{ m}\mu$.
Quarter-wave plate in subparallel position for $\lambda = 540 \text{ m}\mu$.
Green filter for $\lambda = 540 \text{ m}\mu$.
Quarter-wave plates in subparallel position for shorter wave lengths are quoted upon request.

The above plates can also be slightly turned away from their normal orientation, the range covered amounting to a few degrees. They are intended for the exact measurement of path differences after the Sénarmont method for which a revolving and accurately graduated analyser as well as a half-shadow device (Wright eyepiece with half-shadow plates) are required.

Johannsen quartz-gypsum compensator

The quartz wedge is combined with a gypsum plate so selected in its thickness that the path difference obtained on the edge of the wedge is 0. The same slide mount holds, separated from the wedge, a first-order red plate.

This accessory can only be used in conjunction with an objective centring clutch.

Quartz wedge I.-IV. order

Berek rotary compensator (up to 4 orders)

This equipment is based on the principle of the Biot-Bravais compensator which it surpasses by its considerably larger measuring range (4 orders). The values measured can be easily evaluated. For determining small and medium path differences this compensator is much more sensitive than those designed on the Bobinet principle. The Berek compensator is supplied with directions, tables and calibration for 3 wave lengths as well as the conventional optical centre of gravity for white light.

Mica compensator with quarter-wave plate (elliptical compensator), filling the tube slot, for wave length 589 m\mu and for use in conjunction with a rotating analyser

Mica compensator, as above, for wave length 540 m\mu.

Mica compensators for other wave lengths on request.

These mica compensators are intended for measuring path differences in accordance with the Sénarmont method. They require a rotating analyser with accurate reading and a half-shadow arrangement for increasing the setting accuracy (Wright eyepiece with top analyser and half-shadow plates). The mica plate rotates azimuthally in its mount; the rotation can be read correct to 0.1°. Directions and a calibration table are supplied with the equipment.

Broce-Kohler compensator

with 3/10 plate
with 3/20 plate
with 3/30 plate

The Broce-Kohler compensator allows accurate measurements of very small path differences (up to the path difference of the compensator plate) by means of an azimuthally rotating mica plate.

The Wright universal eyepiece and the top analyser as described on page 22 make use of various compensators (doubly refracting wedges). This equipment is advantageous in that the object and the compensator are seen in focus simultaneously, so that, for instance, an orientation scale on the quartz wedge can be read in the course of observations.

Quartz wedge I.-IV. order, in metal slide

Combination quartz wedge after Wright with orientation scale

Quartz double wedge after Wright, in metal slide

This consists of two quartz wedges arranged side by side but in opposite directions and of a plano-parallel quartz plate which is so combined with the wedges that the compensation band appears in the centre. When doubly refracting objects are superimposed this compensation band will simultaneously move to the left in one wedge and to the right in the other wedge.

Johannsen quartz-gypsum compensator, in metal slide (for details see above)
2. Determination of the Directions of Extinction

With the aid of half-shadow plates the determination of the directions of extinction can be carried out with a high degree of accuracy. These half-shadow plates are used in conjunction with the Wright universal eyepiece and the top analyser so that half-shadow plate and specimen will appear in focus simultaneously.

For the Wright universal eyepiece the following half-shadow plates are available:

- Half-shadow plate after Nakamura, in metal slide
 This plate furnishes constant half-shadows obtained by two quartz plates arranged side by side and rotating in opposite directions.
- Half-shadow wedge after Macé de Lépinay, in metal slide
 This consists of two quartz wedges arranged side by side and rotating in opposite directions so that the sensitivity of the half-shadow setting can be varied by simply shifting the wedge.
- Soleil double plate, in metal slide
 This accessory serves for ascertaining weak optical activity. Slight rotations of the plane of the polarized light are detected in colour differences in the two fields of the plate if white light is being used. This effect is achieved by a pair of plano-parallel quartz plates of opposite rotation and of suitably selected thickness.

3. Observation of Dichroism

Eye-piece dichroscope
The eye-piece dichroscope incorporates a Wollaston prism dividing the field of view in two halves the light of which is polarized at right angles to each other.
Eye-piece dichroscope fitting the microscope tube in place of standard eyepieces of 22.2 mm. dia.

4. Determination of the Axial Angle

For the purpose of determining the axis angle a micrometer eyepiece (see p. 22) should be used and calibrated by means of a Metz apertometer. This device consists of a glass body, with scale and focusing markings fitted to a metal support for accommodation on the microscope stage. The microscope objective - a dry system or an oil immersion objective - is focused on to the line cross in the top opening of the apertometer, and the aperture values are read off the scale making use of the Bertrand auxiliary lens.

Metz apertometer

5. Determination of the Light Refraction

Universal Stage Refractometer
This equipment, also known as the Berck microscope refractometer, is designed for the determination of the refractive index of grain preparations after the embedding method and with the aid of a universal stage, the model UT 2 being particularly recommended.
The refractive index of the immersion is adapted to that of the grain by varying the temperature. After a change-over from transmitted to diffused incident light the refractive index results from the setting of total reflection on the UT-stage.

Specification:
Auxiliary arrangement INDEX comprising a lower segment, upper hemisphere with cavity and 3 plano-parallel cover plates, heating ring for the hemisphere with connecting cable, regulating transformer type RT 35 for 110/220 volts A. C.
Special eyepiece INDEX 8x (30 mm. dia.) with cross lines in hollical focusing mount and adjustable eyepiece
Objective UM 20/0.33
Illuminating stand with opal glass plate fitting to the microscope foot

When using a filament lamp as source of light one of the following filters must be placed on the INDEX eyepiece or the top analyser:

- Orange light filter
- Colour filter 670
- Colour filter 550
- Colour filter 480
- Regulating transformer type RT 35 for 110/220 volts A. C.
Circulation Cell after Emmons

This supplementary equipment is primarily offered for the determination of refractive indices after the double variation method (λ-T method as described by Emmons).

The equipment consists of a special lower segment for UT stages and a circulation cell surrounding this segment for varying the temperature. A thermostat is also provided for the purpose. For λ variation when carrying out the λ-T method the large high-power monochromator (see p. 55) must be employed.

Lower segment with circulation cell, in case

LEITZ Phase Contrast Equipment

The accuracy of the immersion method can be considerably improved upon by making use of a phase contrast equipment. Even variations in the 4th decimal place of refractive indices become apparent by differences in intensity or colour differences in the case of different dispersion.

For details on the LEITZ phase contrast equipment see p. 27

LEITZ-JELLEY Micro Refractometer

The micro-refractometer is ideal for determining rapidly and correctly the refractive index of minute quantities of liquids. The measuring accuracy attainable is ± 0.001.

The model I micro-refractometer possesses a measuring scale calibrated for the D line of the spectrum. A filter fitted in front of the entrance slit of the instrument provides suitable illumination. Its measuring range extends from \(\eta_0 = 1.333 \) to \(\eta_0 = 1.92 \).

The model II micro-refractometer has an additional millimeter scale for determining refractive indices between \(\eta_0 = 1.116 \) and \(\eta_0 = 2.35 \). The refracting numbers for this range are ascertained in a table.

Specifications:

LEITZ-JELLEY Micro-refractometer I

- comprising a cast stand, light-screening shield, graduated scale with index slide, prism stage with clip, micro prism cemented to a plane glass plate for determining refractive indices of \(\eta_0 = 1.333 \) up to 1.92
- Complete outfit, as above, with illuminating device for direct connection to the mains (state voltage when ordering)

LEITZ-JELLEY Micro-refractometer II

- comprising a cast stand, light-screening shield, graduated scale with index slide as well as millimeter scale, prism stage with clip, micro prism on plane glass plate, for determining refractive indices of \(\eta_0 = 1.333 \) to 1.92, high-refracting micro prism on plane glass plate with table for determining refractive indices between 1.116 and 2.35
- Complete outfit, as above, with illuminating device for direct connection to the mains (state voltage when ordering)

Separate prices of micro prisms as contained in above outfits:

- Micro prism on plane glass plate for \(\eta_0 = 1.333-1.92 \) JELUV
- High-refracting micro prism on plane glass plate for \(\eta_0 = 1.116-2.35 \), in container, with table JELER
- Z-prism on plane glass plate for \(\eta_0 \) range 1.333-1.532 or 0-95% of dry substance content (sugar) JENIV

Special equipment available on request:
- Large two-component glass prism for determining refractive indices of from 1.116 to 2.35 JELIS
- Illuminating arrangement for sodium light (220 volts A. C. *) to replace the ordinary lamp equipment described above (suitable for alternate use) JEMIT
- Spare sodium burner NAPOB

* Electrical equipment for other mains voltages quoted for on request.
Stage Micrometers

The following micrometers for use on the microscope stage are supplied for the determination of the micrometer value of an objective:

- Stage micrometer with photographic scale 2 mm. = 200 divisions on glass, in container
- Stage micrometer with scale 1 mm. = 100 divisions, ruled on glass, in container
- Stage micrometer with scale 1 mm. = 100 divisions, ruled on metal, for work in incident light, in container

Eyepiece Micrometers and Micrometer Eyepieces

For measuring the object size under the microscope several types of micrometer eyepieces and a range of graticules which can be accommodated in these eyepieces are available and will be found described on page 22.

Screw-micrometer Eyepiece

The special design of the screw-micrometer eyepiece ensures a considerably higher degree of accuracy in measuring than the ordinary micrometer eyepieces. It incorporates a fixed scale of 12 intervals of 0.5 mm. each. A lateral micrometer head allows of moving a measuring line across the fixed scale. The graduated micrometer drum with 100 intervals is so designed that one complete revolution of the drum head coincides with one interval of the fixed eyepiece scale. One drum interval thus corresponds to 1/100 of the 0.5 mm. scale interval. The eyepiece magnification is 12.5x.

Screw micrometer eyepiece (23.2 mm. dia.), in case
(For more details and directions see pamphlet No. 51-17/Engl.)

LEITZ Fibre Measuring Eyepiece

This equipment allows of determining the double refraction in fibres, which in many instances is an important characteristic in checking manufacturing processes of high-polymer fibre materials. It consists of a screw-micrometer eyepiece with top analyser rotating through 360°. The graduation can be read by means of an index. With this equipment thickness and path difference (after Senarmont) can be measured simultaneously, so that the double refraction can be easily calculated. The fibre measuring eyepiece is used either in conjunction with a sodium vapour lamp or a green filter for 540 mic.

Specification:
- Fibre measuring eyepiece with rotating top analyser, in case
- Quarter-wave plate subparallel for 540 mic.
- Monochromatic filter for \(\lambda = 540 \) mic.

For work in sodium light
- Sodium vapour lamp, \(\frac{1}{2} \) wave plate, subparallel, for 589 mic., see pages 57 and 35.

For more details and directions see pamphlet No. 51-17/Engl.
LEITZ Integrating Stage
for the Planimetric Analysis of Materials

The application of the planimetric analysis of materials extends to the fields of general petrography, coal-petrography, mineralogy and ore microscopy. The integrating stage can also be successfully used for most diverse tasks in industrial laboratories, as well as in biology and medicine.

The examinations are carried out in accordance with Rosiwal's method. This is based on the determination of the individual constituent of a material along a series of measuring lines across the surface of the specimen. The sum of the length components of a constituent corresponds to the surface distribution of that particular constituent and therefore to its content percentage.

The accuracy of this measuring method depends on the degree of differentiation of the various constituents in the specimen, the regularity of their distribution throughout the surface under examination and the number and distance of measuring lines applied. The structure of the specimen is decisive for the choice of a suitable separation of the measuring lines.

The LEITZ integrating stage allows of traversing for planimetric assessment on area of 18x18 mm. It is fitted with 6 independently working precision measuring spindles so that up to 6 different constituents of material can be determined under the microscope in one operation. The percentage content of the individual constituents is then easily calculated. Each spindle reads to 0.01 mm. and operates through approx. 25 mm.

Integrating stage with 6 spindles, fitting polarizing microscopes with central rotating stage, in case

Accessories
For work in transmitted light:
Quarter-wave plate in mount to screw to the substage in place of the swing-out condenser top of polarizing microscopes (also suitable for work in circularly polarized light in conjunction with a 1/4 wave compensator)

Supplementary condenser lens fitting stage aperture for use with high magnifications

Old-type integrating stages supplied earlier than 1952 do not accommodate the ISFEI condenser. In this instance a special recess must be provided.

Cost of alteration
Set of 6 flexible extension shafts fitting the micrometer heads

For work in transmitted or incident light:
Small supplementary adjustable stage to bridge over gaps in the specimen by means of a rack and pinion adjustment through 20 mm.

For work in incident light only:
Large supplementary stage to bridge over gaps in the specimen by means of a 20 mm. rack and pinion adjustment and a further 40 mm. movement with clicks stopping at each 10 mm. interval. With this equipment a stop screw and milled counter nut are supplied to limit the range of the measuring spindles to 10 mm.

With old-type integrating stages (supplied before 1952) the top cover plate must be replaced by a new one with thread for the stop screw.

Diagram of the construction of the LEITZ Integrating stage
LEITZ Integrating Eyepiece
for the Planimetric Analysis

In contrast to the integrating stage the new integrating eyepiece permits planimetric examinations of materials at all magnifications including the highest ones and with the aid of all types of condensers required for this extended range of planimetric work. This measuring equipment makes use of adjustable cross lines which are moved across the image of the specimen which, in this instance, remains stationary. Since the measuring process is carried out within the magnified image area, a considerably higher accuracy can be expected than in the case of the integrating stage.

With this basis for precision measurements the integrating eyepiece has been successfully applied to planimetric work in the field of anatomic microscopy, particularly for quantitative determinations on physiological and pathological changes in organs, tissues, and cells. It goes without saying, that the integrating eyepiece also meets the requirements of planimetric studies in petrography, mineralogy, cool-petrography, ore microscopy, or the examination of ceramic and building materials.

The integrating eyepiece can be fitted to all LEITZ microscopes and is equally suitable for work in transmitted and incident light. The modern stands with fixed tube and the focusing arrangement operating the object stage are particularly suitable for mounting the integrating eyepiece with its 6 measuring spindles so that accurate measurements are ensured even when observing with high-power oil immersion objectives.

The optical equipment of the integrating eyepiece yields a magnification of 12.5x and allows of covering planimetrically an area of 10x10 mm. in the plane of the eyepiece intermediate image. The 6 spindles arranged at either side of the eyepiece housing are fully independent of each other so that 6 different constituents can be assessed. The range of the spindles is approx. 25 mm., and the graduations read to 0.01 mm. (1 interval of the scale equals 1/100 mm.)

Standard Slide Comparison Eyepiece

The standard slide comparison eyepiece is a most convenient means for comparing the structure of microscopic images with standard test plates arranged in the intermediate image plane of this eyepiece. A set of comparison slides is fitted to a revolving disc, and each slide can be moved into position so as to cover half of the image field viewed by the observer.

The revolving holder contains 8 slide discs and a free aperture for viewing the entire image field or for accommodating a micrometer plate. A lateral attachment with a low-voltage bulb and a regulating transformer allow of varying the intensity of the comparison image and of adopting it to that of the specimen under observation. The following sets of standard comparison slides are available:

1. Revolving disc with 8 comparison slides of polished cool specimens showing a fusill content of from 5-50% as well as a micrometer plate 10 mm. = 100 intervals (specially offered for the fusil analysis in cool research).
2. Revolving disc with 8 comparison slides of the structure of drawn or rolled brass, as well as a micrometer plate 10 mm. = 100 intervals.
3. Revolving disc with 8 honeycomb-pattern graticules covering half of the field of view as well as a micrometer plate 10 mm. = 100 intervals (specially offered for measuring grain sizes in cast iron etc.). The honeycomb-pattern graticules are of the following sizes:

- 0.0245
- 0.0359
- 0.0507
- 0.0718
- 0.1010
- 0.1440
- 0.2030
- 0.2870

For more particulars and directions of use see special leaflet.

Specification:

Integrating eyepiece 12.5x with 6 measuring spindles, clamping holder to fit wide or standard microscope tubes, in case Set of 6 flexible extension shafts for the spindles

72 CFI

Comparison eyepiece for use with standard slides

Comparison eyepiece for use with honeycomb-pattern graticules
Revolving disc with 8 comparison slides of polished brass specimens and a micrometer plate (for the fusit analysis)

0.0245 mm.
0.0359 mm.
0.0507 mm.
0.0718 mm.
0.1010 mm.
0.1440 mm.
0.2030 mm.
0.2870 mm.

Micrometer plate 10 mm. = 100 intervals.

4. Revolving disc with 9 honeycomb-pattern graticules (for measuring grain sizes of drawn or rolled brass) having the following dimensions:

0.010 mm.
0.015 mm.
0.025 mm.
0.035 mm.
0.045 mm.
0.050 mm.
0.060 mm.
0.070 mm.
0.090 mm.

Specifications:

- Standard slide comparison eyepiece 10x, lamp attachment 8 volts 0.6 amps, swing-out prism for illuminating the comparison field, holding device for the interchangeable revolving discs, inclusive of the revolving disc for the fusit analysis, in container LIIK
- Standard slide comparison eyepiece, as above, but with revolving disc for determining the constituents of brass LIHEG
- Regulating transformer for connecting the 8 volt 0.6 amp lamp attachment to 110/220 volt A.C. mains BEEVY
- Standard graticule comparison eyepiece 10x with holding device for the interchangeable revolving discs, inclusive of the revolving disc for measuring grain sizes of cost iron etc. LIHIN
- Standard graticule comparison eyepiece, as above, but with revolving disc for measuring grain sizes of brass LIHUUK

The honeycomb-pattern graticules can also be obtained separately.

7. The Determination of Absorption and Reflectance

Hand Spectroscopes

The hand spectroscopes are offered for a convenient and rapid observation of absorption and emission spectra.

Both models incorporate a triple Amici prism with linear path of rays as well as an achromatic lens. Model V is equipped with a comparison prism which is illuminated by an adjustable mirror and can be shifted out of operation. The C-F dispersion extends through approximately 5°. Model W features a wave length scale and a C-F dispersion of approx. 7°.

An optional accessory is a clamping device to hold flasks with coloured liquids.

Specifications:

- Hand spectroscope model V with comparison prism, in case SPIMEE
- Hand spectroscope model V with detachable holding device for flasks SREET
- Hand spectroscope model W with wave length scale, in case HEWEK
- Hand spectroscope model W with holding device for flasks HEOWOZ

For full particulars see special leaflet and directions for use.
LEITZ Microscope Photometer

The microscope photometer which is used in conjunction with the vertical illuminator has been designed for measuring the reflectance on polished surfaces of ores, coal, metals etc. It fits all polarizing microscopes with the exception of the simple SM-POL stand. A changing slide renders it possible to carry out microscopic examinations in incident light with instantaneous transition to the measurement of reflectance.

Technical Description

Photometer head: The top port of the photometer is fitted to the straight microscope tube (in place of the photographic eyepiece). It incorporates the photometer cube which leads together the measuring beam and the comparison beam. The intensity variation of the comparison beam to be measured is achieved by two polarizing prisms one of which is rotated and coupled with a measuring circle. Readings are made by means of a vernier correct to 0.1°. The measuring and comparison beams are observed in the inclined eyepiece with focusing eyepers; a slot is provided in the eyepiece for the insertion of filters. The eyepiece shows the fields of the two beams side by side so that the adjustment to equal intensity can be made very accurately. An auxiliary magnifier can be swung in position in front of the eyepiece to check the proper adjustment of the complete photometer setup.

Changing slide with light entrance tubes:
A changing slide carries the light entrance tubes for both the photometer and the vertical illuminator. The photometer light entrance tube holds a slit diaphragm, a light dividing prism and the rotatable polarizing prism. The light entrance tube of the vertical illuminator is equipped with a revolving disc with central stops, a collector, aperture iris diaphragm, half-stop, and a rotatable polarizer. The changing slide is mounted on a bracket which fits the microscope. With the LABORLUX-POL and the DIALUX-POL the bracket is received by a dovetail fitting on the lamp carrier which for the use of the equipment for reflectance measurements is supplied in a specially long model. The ORTHOLUX-POL and the PANPHOT take the changing slide with the entrance tube equipment in their horizontal dovetail fitting underneath the bracket holding the interchangeable observation tube.

Specifications:
Photometer head, as described
Changing slide with light entrance tubes
Set of 3 light filters fitting eyepiece slot
Gray filter
Light-screening curtain
Totally reflecting calibration prism in mount
10 calibration diaphragms

Equipment required for ORTHOLUX-POL and PANPHOT-POL
Vertical illuminator for ORTHOLUX-POL, as described on page 25, but exclusive of front collector and polarizer
Vertical illuminator for PANPHOT-POL, exclusive of front collector and polarizer, but with illuminating tube
(An existing polarizing vertical illuminator can be used; the polarizer must be detached.)
Complete microscope photometer for ORTHOLUX-POL
Complete microscope photometer for PANPHOT-POL

Equipment required for LABORLUX-POL and DIALUX-POL:
Vertical illuminator, as described on page 24, but fitted to a specially long bracket, without collector and polarizer
Complete microscope photometer for LABORLUX-POL and DIALUX-POL
8. Determination of Changes of Condition at Various Temperatures

LEITZ
Heating Microscope
with Polarizing Equipment
(Model III P)

The observation of modification changes and phenomena in polarized light, the effects of strain and stress through considerable changes in temperature, these are some of the types of work which can be systematically carried out by means of the LEITZ heating microscope.

The outfit illustrated below includes a polarizer fitted to the illuminating stand and an analyser arranged in the microscope tube. These components can be rotated singly or jointly by means of a connection bar.

For the reception of compensators the tube is provided with two slots one of which is coupled with the synchronous rotation of polarizer and analyser so that the orientation of the compensator is retained when use is made of the synchronous adjustment of the polarizing elements.

Path differences up to 1 wave length are measured with the aid of a $\frac{1}{4}$ wave plate according to the Sénarmant method, while for higher path differences the Berek rotary compensator is recommended.

The analyser setting and that of the Berek compensator are read by vernier to 0.1°. These values and also the temperature scale appear on the ground glass screen and are automatically recorded when photographs are being taken. Examinations can be made over a wide temperature range since electrical furnaces are available in three models (up to 700°, 1100° and 1800° C respectively) to suit all requirements.

(For full particulars and prices see catalogue 73-3b/Engl.)

Microscope Heating and Cooling
Stage − 20 to + 80°C
with Automatic Thermo Control

The heating and cooling stage with automatic thermo control fits ordinary microscope stands for the examination of specimens under cooling down to −20° C or heating up to +80° C. It is equally suitable for observations with continuously rising or falling temperatures.

Microscope heating stage with connecting cables, cooling tube connection, built-in thermometer, temperature stabilising chamber (bottom left), nitrogen chamber (centre left) and protection tube (top left)
Specification:

Heating and cooling stage -20° to +80° C complete with temperature stabilizing plate, regulating transformer for 110/220 volts A.C. with ammeter and cable, connection piece and 2 rubber tubes for circulation cooling, metal tube with connection nuts, safety valve and adjustable locking valve for the carbon dioxide cylinder, washer, 3 hexagon spanners for fitting the metal tube. The base plate fits the rotating object stage of the microscope. In wooden case.

Heating stage +80° C, without freezing equipment, otherwise as described above.

Freezing equipment to supplement the HEGEH outfit to a complete heating and cooling stage.

Nitrogen chamber and protection tube.

Thermometer with support to read the temperature on the specimen.

LEITZ Microscope Heating Stage Model 350

This stage covers a temperature range of from -20° up to +350° C and features an ingenious arrangement for reading the temperature within the field of view of the eyepiece.

The apparatus consists of a base with built-in heating coil and the specimen chamber. A centring device allows of adjusting the specimen for adequate positioning. The heating coil is surrounded by a cooling chamber for circulating water or carbon dioxide. The specimen chamber is detachable and can therefore be replaced by other attachments.

The temperature is read in a most convenient and accurate manner within the eyepiece. The field in which the thermometer scale appears can be varied in size so as to enable observations to be made through smaller or greater temperature ranges without interrupting the observation of the specimen.

The heating and cooling stage model 350 can be accommodated on any microscope stage.

For routine work a special heating stage stand is available.

The objectives 6/0.18, 10/0.25 as well as UM 20/03 B and UM 32/0.30 are particularly recommended for use with the heating stage.

Recommended objectives for the model 350 heating stage:

When using a polarizing microscope with objective changer or vertical illuminator the low-power objectives for work in transmitted light up to and including the achromatic system are successfully employed. For higher magnifications we recommend objectives of the series specially designed for use with heating stages (tube length 10 mm).

- 5/0.09 with free working distance 13.2 mm.
- 10/0.40 with free working distance 13.6 mm.
- 20/0.80 with free working distance 8.3 mm.
- 32/0.60 with free working distance 5.7 mm.

The free working distance is measured inclusive of the quartz cover disc of the heating stage (1.8 mm. thick). A detailed catalogue is available free on request.

Microscope heating stage 350 mounted on special heating stage stand with eyepiece temperature reading (See catalogue S1—32/Engl. for full details).
LEITZ Microscope Heating Stage Model 1000
(for temperatures up to 1000° C)

This microscope heating stage offers all facilities for investigations at high temperatures in both transmitted and incident light. Its main field of application is in the microscopic detection of physico-chemical changes in materials such as silicates and the various types of glass.

The apparatus comprises a heating coil with cable connection (1), a metal body with cylindrical aperture to receive a quartz object slide of 6.9 mm. dia., a thermocouple with connection (4) for the galvanometer, a cooling chamber with connection tubes (3) for the water circulation, 2 cylindrical sleeves (2) to conduct protective gas through the specimen chamber, a top cover plate with screw thread and a revolving disc with 3 quartz windows and a free aperture. The heating coil is connected to a regulating transformer with fine adjustment.

The quartz windows in the revolving top plate are 1 mm. thick and moved on to the following one if in the case of steaming specimens moisture settles on the inside of the quartz window. The free aperture of the revolving disc is required for inserting the specimen into the heating chamber.

The lower part of the stage is fitted with two protruding centring screws for adjusting the specimen slide.

LEITZ Vacuum Heating Stage

Polished specimens of ores, metals, ceramic materials, hard cool etc. can be examined as to their behaviour under systematic heating up to ±1050° C in a vacuum or any gaseous atmosphere by means of the vacuum heating stage.

The temperature is controlled by means of a regulating transformer and measured by means of a thermocouple and a galvanometer. Observations are possible at magnifications up to 200x.

The equipment suitable for work with this stage includes the objectives 6/0.18, UM 20/0.33 and UM 32/0.30.

Specification:

Microscope heating stage

model 1000

Heating coil (1000° C) with connection and 3 ft. cable, metal body to receive the object slide, cooling chamber with connections for water circulation, 2 tubes 4 x 6, 1250 mm. and 500 mm. long, 1 tube 10 x 14, 1250 mm. long, intermediate tube adapter, top cover with screw thread and revolving holder with 3 quartz windows on a free aperture, built-in platinum-platinum + rhodium thermocouple with 2 compensating wires, tube sleeves for the conduction of protective gases, centring device and 2 fixing screws.

Complete heating stage model 1000

Temperature reading instrument (galvanometer) with 1200° C scale.

Regulating transformer with built-in fine adjustment 0-15 volts, 300 VA, for connection to 100/220 volt A. C.

Recommended objectives:

For temperatures up to 700° C:
Achromatic objective 6/0.18

Adchromatic objective 10/0.25

For temperatures up to 1000° C:
Objective UM 20/0.33
Objective UM 32/0.30

Low-power ULTROPAK objectives up to and including UO 6.5x

Vacuum heating stage

for heating specimens in a vacuum or a gaseous atmosphere up to 1050° C, with water circulation cooling, thermocouple and temperature reading instrument, regulating transformer for 110/220 volts A. C. Complete outfit.

Galvanometer, calibrated up to 1200° C.

For full particulars see special catalogue.
C Other Instruments for Optical Examinations in Polarized Light

D Photomicrographic Equipment

E Special Light Sources
Binocular Prism Magnifiers
with polarizing equipment
Magnifications 3.5-10.5x and 10-30x.

The stereoscopic method of observation, the long free working distance and the wide field of view in which the object is seen in its normal position make these instruments ideal for all types of inspection and dissecting work.

Technical Description
There are two binocular magnifier bodies with built-in objectives and an identical set of 3 pairs of interchangeable eyepieces for total magnifications 3.5x, 7x, 10.5x and 10x, 20x, 30x respectively. These bodies incorporate a rack and pinion focusing motion with controls on both sides and a dovetail slide. With this they are mounted on a long and short handle respectively which in turn fit a stage with full equipment for observations in incident and transmitted light. The short foot of the stage can be swung out of its normal position for inclining the stand as a whole.

The polarizing equipment consists of a pair of filter analysers, a revolving stage and a filter polarizer. The filter analysers are mounted on a slide held in a carrier which fits over the magnifier objectives and has a slot for the insertion of compensators. The revolving object stage has lateral centring screws and a substage sleeve in which the polarizer is clamped.

Illuminating Equipment
For observations in both transmitted and incident light the MONLA microscope lamp with filament bulb 6 volts 30 watts will be found very satisfactory (for particulars see p. 57).

Optical Data
Magnifier body for low magnifications
Free working distance 144 mm. (approx.)
Pair of eyepieces o5 o10 o15
Magnification 3.5x 7x 10.5x
Diameter of the field of view (approx.) 45 mm. 30 mm. 21 mm.

Magnifier body for high magnifications
Free working distance 79 mm. (approx.)
Pair of eyepieces o5 o10 o15
Magnification 10x 20x 30x
Diameter of the field of view (approx.) 16 mm. 11 mm. 8 mm.

Outfits
Binocular prism magnifier for low magnifications
(3.5-7-10.5x) with polarizing equipment
Magnifier body for low magnifications with rack and pinion focusing motion having control heads on either side
Pair of eyepieces o5 (for 3.5x magnification)
Pair of eyepieces o10 (for 7x magnification)
Pair of eyepieces o15 (for 10.5x magnification)
Interchangeable long handle
Stage for transmitted light with inclinable foot, large illuminating mirror, attachable wooden hand rests
Revolving object stage with polarizer and bracket with analyser fitting the magnifier body
Cabinet for the complete outfit
Complete binocular magnifier 3.5-10.5x, in cabinet

Optional Accessories
First-order red compensator 21 mm. dio.
Quarter-wave compensator 21 mm. dio.
Binocular prism magnifier for high magnifications
(10-20-30x) with equipment for polarized light
Magnifier body for high magnifications with rack and pinion focusing motion having control heads on either side
Pair of eyepieces o5 (for 10x magnification)
Pair of eyepieces o10 (for 20x magnification)
Pair of eyepieces o15 (for 30x magnification)
Interchangeable short handle
Stage for transmitted light with inclinable foot, large illuminating mirror, attachable wooden hand rests
Revolving object stage with polarizer and bracket with analyser fitting the magnifier body
Cabinet for the complete outfit
Complete binocular magnifier 10-30x, in cabinet

Optional Accessories
First-order red compensator 13 mm. dio.
Quarter-wave compensator 13 mm. dio.
A special leaflet on pillar stands for the magnifier bodies is available on request.
2. Stereo microscope body with rapid objective changer

This microscope body differs from the one described under 1. by its horizontal precision slide with 3 pairs of objectives which can be rapidly brought into position by operating a lateral control head. The objectives are so matched that the image remains in position when the changeover is made only a slight re-focusing may be necessary occasionally. Click stops are provided for the correct settings. 2 pairs of objectives can be interchanged for other systems while the third pair is a 1x equipment which is permanently mounted. The magnification range can thus be varied at will between 8 and 216x.

Specification:

Stereoscopic microscope for observations in polarized light

Stereoscopic microscope body with inclined eyepiece tubes which can be set to the interpupillary distance and clamping collars for the eyepieces, objective changer for single pairs of objectives. Rack and pinion focusing motion with control heads on either side, dovetail fitting for mounting the body on various types of stands. Bracket with slide fitting to receive the analysers.

Stand for work in transmitted and incident light with universally adjustable large illuminating mirror and white opaque disc at the back. 2 stage clips. Attachable wooden hand rests. Detachable revolving and centring object stage on metal base, rotating polarizer, opal and block glass plates fitting the stand in place at the rotating stage for observation in ordinary incident light. Dovetail fitting taking the stereo microscope body.

Wooden cabinet with fittings to hold objectives and eyepieces, with lock and key.

Complete stereo microscope, exclusive of objectives and eyepieces

GUVEB-GOZAX

Extrav for supplying the stereo microscope body with 180° rotation to the eyepiece tubes (which is essential when fitting the body to a pillar stand)

GUZUK

Optional Accessories

- Slide with first-order red plate, 30 mm. dia.
- Slide with quarter-wave plate, 30 mm. dia.

Paired objectives and eyepieces

- Pair of objectives 1x (for microscope GUVEB only)
- Pair of objectives 2x
- Pair of objectives 4x
- Pair of objectives 8x
- Pair of objectives 12x
- Pair of wide-field eyepieces G 8x
- Pair of wide-field eyepieces G 12.5x
- Pair of wide-field eyepieces G 18x

One of the eyepieces can be supplied with an adjustable eyelens (for focusing eyepiece micrometers), extra

GREJT

GOXIX

GOXOY

Eyepiece micrometers

For insertion under the eyelens (which should be adjustable as under GREJT)

- Micrometer plate 10 mm. = 100 intervals
- Micrometer plate 5 mm. = 100 intervals
- Micrometer plate 10 mm. = 200 intervals
- Line cross plate

YGEEQ

YHEEP

YMEEL

YSMEE

Magnifications 8-216x.

Stand for transmitted and incident light with dovetail fitting receiving either a stereo microscope body with changer for single pairs of objectives or a body with rapid changer for 3 pairs of objectives (two being interchangeable and one being a pair of 1x objectives permanently fitted).

Revolving and centring object stage with graduation in degrees and vernier, 2 stage clips, spring sleeve to receive a polarizer and a universally adjustable illuminating mirror with a white opaque disc at the back.

Rotating polarizer with ground glass disc in cylindrical mount fitting the sleeve underneath the object stage.

1. Stereo microscope body with slide changer for single pairs of objectives

The microscope body incorporates a rack and pinion focusing motion with controls on either side. A dovetail fitting receives a bracket with a pair of analysers. A slot is provided for the insertion of compensators (quarter-wave or first-order red plates). One pair of standardized objectives rigidly mounted as one unit is inserted at a time into the precision objective changer.

Magnifications, free working distances and fields of view

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Free working distance</th>
<th>Micrometer value with G 12.5 and 18x</th>
<th>G 12.5x</th>
<th>G 18x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm.</td>
<td>μm.</td>
<td>mm.</td>
<td>mm.</td>
</tr>
<tr>
<td>1x</td>
<td>105</td>
<td>100</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>2x</td>
<td>90</td>
<td>50</td>
<td>16</td>
<td>10.0</td>
</tr>
<tr>
<td>4x</td>
<td>47</td>
<td>25</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>8x</td>
<td>27</td>
<td>13</td>
<td>64</td>
<td>2.5</td>
</tr>
<tr>
<td>12x</td>
<td>18</td>
<td>8.6</td>
<td>96</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Stereoscopic microscopes with Polarizing Equipment

Stand for work in transmitted and incident light with large illuminating mirror with a white opaque disc at the back, 2 stage clips, one pair of attachable wooden hand rests. Revolving and centring object stage on metal base with which it can be removed from the stand for insertion of an opal or block glass plate for incident light observations without polarizing equipment. Dovetail fitting to receive the stereo microscope body. Wooden cabinet with fittings to accommodate objectives and eyepieces.

Complete stereo microscope, exclusive of objectives and eyepieces

GUVEB-GOZAC

GUZUK

GOZIZ

GOZEY
Large Polarizing Outfit for Strain and Stress Tests

The apparatus illustrated in two possible setups at the right is designed for examining and photographing states of strain and stress in models made of glass or suitable plastics or finished parts of these materials. Retardations are measured by means of the Berek rotary compensator and data ascertained as regards strain and stress.

Technical Description:
All parts necessary for carrying out strain and stress tests are fitted to saddle stands mounted on an optical bench; they include the light source, polarizing elements, condensers, objectives etc. The light source, either a 100 watt filament lamp for direct mains connection or a mercury vapour lamp, is accommodated in a lamp housing. The polarizer and analyser filters of large diameter can be rotated individually or synchronously by means of a coupling bar. The rotation can be read at intervals of 5°. Quarter-wave plates can be inserted with the appropriate orientation for examinations in circularly polarized light.

The equipment includes a saddle stand with vertically adjustable rod for which fixtures can be made to hold the objects to be tested. The image of the object is projected on to a ground glass screen 24x24 cm. in size. For the measurement of retardations with the aid of the rotary BEREK compensator: the large lamp housing is replaced by a special one an saddle stand which takes either a 100 watt low-voltage filament lamp or the mercury vapour lamp used in conjunction with an adjustable illuminating lens. In addition to the BEREK compensator the following accessories are required:
- Collecting lens with filter holder, condenser and a projection lens.

The photographic equipment:
To photograph stress or strain figures the ground glass screen is replaced by a LEICA 35 mm. camera with micro mirror reflex arrangement, focusing bellows and f/4.5 135 mm. HEKTOR lens. This equipment is fitted with a horizontal rack and pinion motion and mounted on a saddle stand.

Specification:
LEITZ polarizing outfit for strain and stress tests:
Prismatic bar, 2 m. long, with cm. scale, mounted on a wooden base with iron legs.
Saddle stands with equipment as follows:
No. 1 with lamp house and adjustable illuminating lens, low-voltage filament lamp 12 volts 100 watts with transformer for 110/220 volts A.C. and mercury vapour lamp CS 150 with reflector and starting equipment including connecting cables.
No. 2 with collecting lens and filter holder with green filters Nos. 200b and 211.
No. 3 with illuminating objective 80 mm.
No. 4 with filter polarizer 8° dia. and ¼ wave mica plate.
Both in rotating mounts.
No. 5 with Berek rotary compensator, rotating mount with rack and pinion motion.
No. 6 with filter analyser 8° dia. and ¼ wave plate, both in rotating mounts, operating through 180° with readouts from 5 to 5°, coupling bar for synchronous rotation of the equipments of saddle stands Nos. 4, 5 and 6.
No. 7 with 80 mm. projection objective.
No. 8 with ground glass screen approx. 10" x 10" in wooden frame.
No. 9 with large lamp housing, ground glass disc and attachable green filter, filament lamp 100 watts for direct mains connection 110 or 220 volts, also with provision for fitting the mercury vapour lamp of saddle stand No. 1.
No. 10 with vertically adjustable rod for fitting a fixture to suit the type of specimen to be accommodated.

Large polarizing outfit for strain and stress tests, complete

Supplementary photographic equipment:
Saddle stand No. 11 with rack and pinion for horizontal lateral adjustment to take the photographic unit.
LEICA focusing bellows for using the f/4.5 135 mm. HEKTOR lens UXOOR-HE.
HEKTOR f/4.5 135 mm. lens to screw to the focusing bellows (exclusive of helical mount for rangefinder focusing).
Micro mirror reflex attachment with ground and clear glass focusing screens in revolving holder, 3x focusing magnifier, and double release (please state when ordering type of camera to be used).
Photographic equipment (without LEICA camera):
Large polarizing outfit for strain and stress tests, inclusive of photographic equipment but exclusive of LEICA camera.
If no LEICA camera body is available we recommend the simple model Iq (without built-in rangefinder).
The well-known LEITZ 2"x2" slide projector PRADO 250 or 500 can be effectively supplemented by a polarizing attachment for demonstrating polarization and double refraction phenomena for teaching purposes. With the aid of a set of selected specimens the equipment will produce excellent screen images to enable a large number of persons to see the fundamental features of polarization and methods of investigation based on it in mineralogy, petrography, crystallography and technology in general. The demonstrations include:

- Birefringence and polarization in calcite,
- Behavior of anisotropic bodies in linearly and circularly polarized light,
- Dichroism,
- Interference phenomena in polarized monochromatic and white light,
- Double refraction by strain or stress,
- Optical rotation power and rotation dispersion,
- Determination of the relative size of refractive indices by the use of gypsum or mica plates (in the base of the lens sleeve),
- Measurements of retardations with a quartz wedge, with a ¼ wave plate (Sénarmont's method), or with the BERK rotating compensator,
- Conoscopic images of uniaxial and biaxial crystals,
- Determination of the optical character in the conoscopic image by means of a first-order red plate, a ¼ wave plate or the rotating BERK compensator,
- Measurement of the axial angle of a mica plate.

For the experiments and demonstrations outlined above the following specimens are supplied:

1. Calcite crystal with fixed pinhole stop
2. Anhydrite
3. Tourmaline
4. Gypsum of irregular thickness
5. Gypsum figure
6. Quartz wedge
7. Mica-quartz combination (white of 1st and higher orders)
8. Glass press
9. Strained glass
10. Quartz cut at right angles to the optic-axis, coalescence (left and right)
11. Selenite's double plate
12. Calcite cut at right angles to its axis
13. Aragonite vertical to 1st centre line
14. Muscovite (separation piece)
15. Topaz vertical to 1st centre line
16. Sugar vertical to one axis

Equipped with the polarizing attachment the PRADO projector represents a fully efficient strain and stress testing apparatus.

For the projection of objects embedded in liquids, melting substances or specimens difficult to accommodate on the usual object holder the polarizing attachment can also be supplied in a vertical model with provision for horizontal specimen accommodation.

Projection distances and screen image sizes:
The diameter of the screen image depends on the projection distance and the focal length of the projection lens as well as the free aperture of the object stage which in this instance is 28 mm. in diameter.

<table>
<thead>
<tr>
<th>Projection distance in feet</th>
<th>85 mm.</th>
<th>100 mm.</th>
<th>120 mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6½</td>
<td>2</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>10</td>
<td>3½</td>
<td>2½</td>
<td>2½</td>
</tr>
<tr>
<td>13</td>
<td>4½</td>
<td>3½</td>
<td>3</td>
</tr>
<tr>
<td>16½</td>
<td>5½</td>
<td>4½</td>
<td>3½</td>
</tr>
<tr>
<td>20</td>
<td>6½</td>
<td>5½</td>
<td>4½</td>
</tr>
<tr>
<td>23</td>
<td>7½</td>
<td>6½</td>
<td>5¼</td>
</tr>
<tr>
<td>26</td>
<td>7¼</td>
<td>7¼</td>
<td>5⅛</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>7½</td>
<td></td>
</tr>
</tbody>
</table>

The table values are approximate figures.
Specifications of polarization equipment for the PRADO projector

Polarizing attachment, basic equipment, for horizontal use and orthoscopic demonstrations, comprising the attachment with long guiding rods, adjustable front support, air funnel, condenser and filter receptacle

Polarizer and analyser on clamping holders with connection bar for synchronous rotation

Rotating stage on clamping holder

Lens sleeve on base with clamping screw and holder for quarter-wave or first-order plates

Projection lens (as selected)

- HEKTOR 1/2.5 85 mm.
- HEKTOR 1/2.5 100 mm.
- DIMARON 1/2.8 100 mm.
- HEKTOR 1/2.5 120 mm.

Complete attachment, horizontal model

Complete attachment, vertical model

Accessories for projecting conoscopic interference images:

- Condenser in centring mount and supplementary front lens on attachable holder

Accessories for demonstrations in circularly polarized light:

- Two quarter-wave plates in mount

Further accessories:

- Slide with first-order red plate
- Slide with quarter-wave plate (these items fit the slot in the lens support)
- Rotatory compensator after Berek on clamping holder and with detachable calcite plate
- Mica plate* in sliding mount to replace the detachable calcite plate of the Berek compensator
- Iris diaphragm, attachable to the lens
- Green filter (540 μ)
- Red filter (650 μ)
- Set of 16 demonstration specimens, in case
- Carrying case for complete polarizing attachment

If a PRADO projector 250 or 500 watts is not yet available, the following basic apparatus is required for the polarizing attachment:

- PRADO 250 projector with aspherical condenser, reflector, heat-absorbing filter, lamp socket but exclusive of bulb, also without field condenser lens and slide front
- Attachable blower unit (essential for 500 watt lamp)
- Supplementary heat-absorbing filter for 500 watt lamp

Micro-attachment with polarizing equipment for the PRADO projector

The PRADO projector fitted with a large micro projection attachment and a low-voltage filament lamp can be successfully supplemented for the projection in polarized light. Screen images of satisfactory brilliance can be obtained with magnifications up to approximately 1500x. Quotations for such equipment are gladly submitted upon request.

* Any air streaks which may be present in the mica plate do not adversely affect the demonstration. Since the selection of mica plates of this thickness (0.3 mm.) entirely free from air bubbles etc. would render them very much more expensive, it was considered unnecessary to eliminate this insignificant defect.

The polarizing attachment fits all PRADO projectors, models 250 and 500 with serial numbers over 112,000. The ideal light source is the low-voltage filament lamp 250 watts 50 volts which necessitates a transformer or resistance but the ordinary 250 watt lamp for direct mains connection is also satisfactory. The projector should be equipped with a blower or a supplementary second heat-absorbing filter.
D. Photomicrographic Equipment

All polarizing microscopes can be supplemented for photomicrographic work by means of relatively simple micro camera attachments (for 35 mm. film or quarter plates) or a large vertical camera with mirror reflex arrangement.

The MIKAS Micro Attachment (for 35 mm. Film)

adopts any LEICA camera model for taking photomicrographs on 35 mm. black-and-white or colour films. The equipment includes a conical adapter with lens, a lateral focusing telescope which indicates the area photographed and enables the operator to view the specimen during the actual exposure, if necessary, a self-winding central shutter for B, T, and 1 to 125 sec. speed settings and flash synchronization. (When ordering please state the serial number or model designation of an existing LEICA camera to be used for this equipment.)

Specification
Micro attachment for the LEICA 35 mm. camera with conical adapter with lens 1/x, lateral focusing telescope with swing-out prism, time and instantaneous shutter with flash synchronization, periplanatic eyepiece 10x, eyepiece clamping collar and two wire releases for prism and shutter operation, in case

Optional Accessories
Interchangeable intermediate adapter with lens 1/x
Release coupler (for operating prism and shutter automatically in the correct sequence)
LEICA camera lg, without lens, viewfinder and film chamber
Wire release with fixing screw for the LEICA shutter
Adapter with clamping collar for using the micro attachment on microscope tubes of 30 mm. dia.

Micro Mirror Reflex Attachment IFLEX (for 35 mm. Film)

This equipment features ground glass observation and clear glass focusing by means of a 5x magnifier for all LEICA cameras fitted as shown in the illustration at the left. The focusing screens are mounted in a revolving holder. The possibility of observing the specimen during the actual time of exposure is also ensured by the lateral telescope with prism and central shutter. This equipment cannot be mounted directly on the microscope tube but requires a separate photographic stand such as the ARISTOPHOT fully described in a special catalogue. An illustration is shown on the following page.

Specification
Micro mirror reflex attachment for the LEICA with swing-out mirror, rotating rectangular diaphragm for setting the equipment for horizontal or vertical photographs, revolving holder with ground and clear glass screens, interchangeable 5x focusing magnifier and double release
Bracket with dovetail slide to fit the mirror reflex attachment to the prismatic bar of the ARISTOPHOT or PANPHOT cameras
Intermediate adapter 1/x to screw between the central shutter and the mirror reflex housing
Focusing telescope with swing-out prism, light-screening sleeve for the microscope, central shutter for time and instantaneous exposures, with flash synchronization, wire releases and release coupler for operating the prism and the shutter in the correct sequence

The MAKAM Camera Attachment (for Plates)

fits all microscopes and enables photomicrographs to be taken on plates 9x12 cm. or 3½"x4¼". Focusing is achieved through a lateral telescope with image area graticule and a swing-out prism deflecting about 25% of the light of the image-forming rays for the purpose of focusing. It can be left in position even when the photograph is being taken at the expense of a longer time of exposure, of course. Two wire releases are supplied to operate the prism and the built-in time and instantaneous shutter.

Specification
Light-metal body with 2 darkslides, 1 ground glass screen, central shutter for time and instantaneous exposures with flash synchronization, wire release, lateral observation and focusing telescope with swing-out prism and wire release, 10x periplanetic eyepiece of standard diameter and clamping collar for mounting the camera equipment on any microscope with vertical tube, in case
Intermediate adapter with clamping collar for fitting the MAKAM camera to microscope tubes of 30 mm. eyepiece diameter.
The LEITZ linear monochromator is built on the principle of a mirror monochromator in Littrow arrangement. The monochromatic beam leaves the instrument as if its optical axis was the linear extension of the axis of the illuminating cone. The aperture ratio is 1:4, and the focal length of the collimator and collector mirrors is 200 mm. The instrument incorporates 2 prisms which can be interchanged by simply operating on outside lever. The glass prism covers a wavelength range from approximately 390 μm to 1100 μm, while the second prism of homogenised Ultrasil covers the range 205 to 440 μm. The required wavelength is set by means of a drum head of 120 mm diameter which has separate wave length scales for the two ranges and an additional evenly graduated scale with vernier. The entrance and exit slits are coupled and are usually set to the same width by means of the joint measuring drum head; a drum value of 10 corresponds to 0.2 mm slit width. When for special purposes individual slit adjustment to different widths may be desirable; the coupling mechanism can be disengaged by lifting the measuring drum head.

An illuminating lens made of Suprasil quartz glass of high transmission for ultraviolet light is placed in front of the entrance slit. There are two interchangeable light sources, i.e. a 6 volt 30 watt filament lamp and a hydrogen lamp 80 volts 300 mA (type DL-100). The latter is run through a special supply unit for connection to 220 volt mains which ensures a stabilized anode voltage with variations less than ± 1% of the mains voltage.

For special requirements the monochromator can be supplied with one prism and one light source only at a reduced figure. The rigid flat baseplate with which the monochromator is normally supplied can be unscrewed and replaced by a costing fitting on the prismatic bar of an optical bench.

A special form of the monochromator is made with an extended shaft which is coupled to the prism rotation to allow a continuous repetition of the complete working cycle of the prism throughout its spectral capacity. The outside shaft can be driven by a synchro motor or the driving unit of a recording instrument.

Specification:

Linear mirror monochromator with two prisms comprising the linear mirror monochromator in Littrow arrangement, aperture ratio 1:4, collimator and collector of 200 mm focal length, glass prism for wave range 390-1100 μm, and Ultrasil prism for wave range 205-440 μm, with low-operated rapid changeover mechanism and lamp housing with 6 volt 30 watt filament bulb with prefocus base, KAMS.

Regulating transformer for the low-voltage lamp 110-220 volts A. C., REDYX.

Hydrogen lamp DL-100, 80 volts 300 mA with stabilized supply unit, complete for 220 volts A. C., IKAHM.

Complete linear monochromator (Quotations for equipment for other supply voltages on request), IKBAB.
For microscope stands without built-in illuminating system the MONLA microscope lamp is recommended as an efficient light source being equally suitable for all types of visual observation and photomicrography. It is particularly recommended for use with the binocular prism magnifiers as well as the stereoscopic microscopes. The lamp house is adjustable in all directions on a pillar with heavy metal base and equipped with a centring lamp socket and a focusing illuminating lens. An iris diaphragm with filter frame can be clamped to the lens mount to provide most favourable illumination in the case of dark field observations. The type of bulb used is a 6 volt 30 watt filament lamp of high and even intensity as well as a very favourable spectral composition.

MONLA Microscope Lamp

Specification:
MONLA microscope lamp with 6 volt 30 watt bulb, centring lamp socket with cable and plug, focusing aspherical illuminating lens, universal joint with clamping screws and supporting pillar on heavy base

Accessories:
Iris diaphragm with filter frame (50 x 50 mm.) to clamp to the mount of the illuminating lens
Heat-absorbing filter 50 x 50 x 3 mm.
Special daylight filter

Sodium Vapour Lamp

For microscopes with which the light of separate special light sources can be conducted to the illuminating equipment via an adjustable mirror, a sodium vapour lamp is available in a special model of the MONLA microscope lamp.

Specification:
MONLA lamp housing on pillar stand with special socket
NARIB to receive a sodium burner
Sodium burner
Starting unit for 110 volts A.C.
for 220 volts A.C.

Xenon discharge lamps and mercury vapour high-pressure lamps
can be supplied for special requirements and most exacting methods of microscopic work including fluorescence observations, photomicrography, micro-projection etc. They can be combined with any of our microscope models and will be quoted for with full details upon request. While the Xenon discharge lamp yields an intense light of an almost continuous spectral composition, the high-pressure mercury vapour lamp produces an illumination of spectral lines thereby making it particularly suitable for fluorescence work (see also page 18 on light sources for the PANPHOT camera microscope).
Bibliography
Berek, M.: Dioptrische Anisotropieeffekte zwischen gekreuzten Nicols im Auflich. Z. Krist. 89 (1934) S. 125

Berek, M.: Theorie der Anisotropieeffekte zwischen gekreuzten Nicols im Auflich. Z. Krist. 89 (1934) S. 144

Berek, M.: Ein Prisma für 90°-Ablenkung, bei dem die Störungen im Polarisations-

Berek, M.: Die Bestimmung der optischen

Berek, M.: Dioptrisch anisotrope

Berek, M.: Fortschritte in der mikroskopischen

Berek, M.: Optische Methoden im polarisierten

Berek, M.: Zur Messung der Stärke des

Brekner, W.: Kristallographie

Cameron, E. N., und Green, L. H.: Auflichtmethoden Econ. Geol. 48 (1953) No. 8, p. 719

Cameron, Huchinson, Green: Sources of error in the measurement of

Cameron, E. N.: Bemerkungen zum Gebrauch von Polarisationsfiguren und Vervielfachern Econ. Geol. 46 (1951) p. 337-348

Cameron, Huchinson und Green: Fehlerquellen beim Messen der

Dienes: Die Benutzung polarisierter Lichtes zur Untersuchung verkrümmter Metall-

Dienes, L.: Mikroskopiales Praktikum Stuttgart 1952, S. 17

Schumann, H.: Beiträge zur Schwermineralanalytik Fortschr. Miner. 27 (1950) S. 79-106

Schumann, H.: Neue optische Methoden für die

Ultrapak incident light illuminator

Universel rotating stages and accessories

Arends, H.: Bestimmung der Dicke von

Anderson, J.: Phase-contrast methods and

Barr, R.: Phase-contrast, interference-contrast and

Barr, R.: Phase-contrast microscopy New York 1951

Berek, M.: Neuer Weg zur Universalmethoden

Berek, M.: Mikroskopische Mineralbestimmung mit Hilfe der Universalröhrenchenmethoden Berlin 1924

Berek, M.: Grundzüge zur Bestimmung der

Comard, L.: Theorie et pratique de la méthode

Chudoba, K.: Die Feldspäte und ihre praktische

Distelz, A.: Die negative Einfärbung von tertiären

Smithar, E.: The application of phase contrast microscopy to mineralogy and

Zernike, F.: Das Phasenkontrastverfahren bei der

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische

Zernike, F.: Phasenkontrast, ein neues Verfahren für die mikroskopische
Burri, C.: 1. c. S. 140

Phase contrast equipment

Leitz-Jeley micro-refractometer

Leitz-Jeley micro-refractometer.

Leitz-Jeley micro-refractometer.

Leitz-Jeley micro-refractometer.

Leitz-Jeley micro-refractometer.
Fibre measuring eye piece

Integrating stage

Kühlwein, Hoffmann und Kröps Stand der mikroskopischen Kohlenuntersuchung. Gibt. (1954) 777 und 804

Rinne-Berek: Die Mikro- und Mikromikrophotographie. Leipzig 1953

Microscope photometer

Rinne-Berek: I. c. S. 166 und S. 313

Stech, E.: Die Bestimmung der Inklination der boden durch Reflexionsmessungen an Kohlen schichten Gießen, Mf (1950) S. 911

Dr. D.:

Photographic equipment

K: Die Grundlegung der Mikrophotographie. Jena 1949

Special light sources and monochromators

Mees, H.: Erfahrungen mit der LEITZ'chen Monochromatoren. Z. wiss. Mikrosk. 53 (1938) S. 41

Rinne-Berek: I. c. S. 52 und S. 167

This bibliography should not be considered complete but aims at giving the user of polarising equipment some information on fundamental publications and particularly those relating to the use of LEITZ instruments.

The illustrations reproduced in this catalogue may not conform in every detail to instruments supplied, since efforts are constantly being made to improve LEITZ instruments in the light of modern research. Block or photographs of our instruments for publications in the scientific press are available free of charge.
Our production programme includes:

- Microscopes of all types
- for general medical and biological work, metallurgy, mineralogy, ore microscopy, coal-petrography etc.
- Phase contrast equipment
- Binocular prism magnifiers
- Stereoscopic microscopes
- Photomicrographic equipment
- Microtomes
- Micro-refractometers
- Spectroscopes
- Electro-polarimeter
- Electro-photometer
- Monochromators
- Infrared spectrographs
- Precision measuring instruments
- Surface testing equipment
- Material testing instruments
- Prism binoculars
- LEICA 35 mm cameras with supplementary equipment for scientific and technological photography
- Slide projectors and epidiascopes of all types including large lecture hall projectors, micro-projectors, and 16 mm sound-film equipment
Price List

Polarizing Microscopes and other Instruments for Examinations in Polarized Light
Cat. #55-20/Engl.

<table>
<thead>
<tr>
<th>Page 7</th>
<th>Microscope</th>
<th>SM-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMIND</td>
<td>$563.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBAY</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETRI</td>
<td>$46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAZ</td>
<td>$109.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAWS</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMJS</td>
<td>$235.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMKAS</td>
<td>$798.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMKET</td>
<td>$826.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBOC</td>
<td>$113.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERIB</td>
<td>$315.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENT</td>
<td>$53.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETIF</td>
<td>$90.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADAL</td>
<td>$14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIORD/New</td>
<td>$1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NANA-RESEV</td>
<td>$113.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESV</td>
<td>$42.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESUY</td>
<td>on request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINOP</td>
<td>$3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETY</td>
<td>on request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIDID</td>
<td>included with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABOLUX-POL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEDUG</td>
<td>$1,265.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBAY</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETRI</td>
<td>$46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAZ</td>
<td>$109.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEHM</td>
<td>$127.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBEMET</td>
<td>$20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUKAP</td>
<td>$28.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMJIT</td>
<td>$451.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEGOH</td>
<td>$2,050.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEGUJ</td>
<td>$2,233.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 9</th>
<th>Microscope</th>
<th>LABOLUX-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDUG</td>
<td>$1,265.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBAY</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETRI</td>
<td>$46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAZ</td>
<td>$109.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PELMFE</td>
<td>$127.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBEMET</td>
<td>$20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUKAP</td>
<td>$28.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMJIT</td>
<td>$451.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 12</th>
<th>Microscope</th>
<th>DIALUX-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PEDEC</td>
<td>$1,756.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBAY</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETRI</td>
<td>$49.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAZ</td>
<td>$109.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PELMFE</td>
<td>$127.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBEMET</td>
<td>$20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUKAP</td>
<td>$28.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 13</th>
<th>Microscope</th>
<th>EFILUX-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PEMAK</td>
<td>$1,371.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IICVO</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IICUY</td>
<td>$74.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IICX</td>
<td>$131.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDAX</td>
<td>$155.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDCB</td>
<td>$207.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIRM</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMU</td>
<td>$31.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 14</th>
<th>Microscope</th>
<th>ORTHOLUX-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OLVAI(FS 45/237)</td>
<td>$1,620.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEIZ</td>
<td>$146.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEZAX</td>
<td>$120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OZAR</td>
<td>$44.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYMZ</td>
<td>$75.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVRX</td>
<td>$363.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REHUX</td>
<td>$67.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBAY</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETRI</td>
<td>$46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAZ</td>
<td>$109.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PELMFE</td>
<td>$127.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBEMET</td>
<td>$20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUKAP</td>
<td>$28.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMJOW</td>
<td>$504.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 16</th>
<th>Microscope</th>
<th>PANPHOT-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PEVET</td>
<td>$644.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVMQ</td>
<td>$1,681.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEvB</td>
<td>$53.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISGCIC</td>
<td>included with</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEIZ</td>
<td>$146.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEZAX</td>
<td>$120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OZAR</td>
<td>$44.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EYMZ</td>
<td>$75.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVRX</td>
<td>$363.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REHUX</td>
<td>$67.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEBAY</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETRI</td>
<td>$46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PECAZ</td>
<td>$109.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PELMFE</td>
<td>$127.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OBEMET</td>
<td>$20.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUKAP</td>
<td>$28.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMJOW</td>
<td>$504.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 20</th>
<th>Microscope</th>
<th>PANPHOT-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OPARK</td>
<td>$428.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLTUB</td>
<td>$99.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPIT</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IWM1</td>
<td>$12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCVO</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCY</td>
<td>$74.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICCXS</td>
<td>$131.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDAX</td>
<td>$155.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDC8B</td>
<td>$207.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIRM</td>
<td>$61.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIDMU</td>
<td>$31.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLVEYREDYX</td>
<td>$2,773.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLVIZREDYX</td>
<td>$2,799.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLVOC-RENAS</td>
<td>$4,081.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLVOC-RENAS</td>
<td>$4,107.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page 17</th>
<th>Microscope</th>
<th>SFILUX-POL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PEMAK</td>
<td>$1,371.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IICVO</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IICUY</td>
<td>$74.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IICXS</td>
<td>$131.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDAX</td>
<td>$155.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDCB</td>
<td>$207.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIAUX</td>
<td>$39.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIRM</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBLTIBKTI</td>
<td>$41.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDMU</td>
<td>$31.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effective: March 7, 1961

E. LEITZ, INC.
468 PARK AVENUE SOUTH
NEW YORK 16, N. Y.
Page 21

OBJECTIVES

PEART $ 44.00
PETIA $ 36.00
PEBAY $ 41.00
LAYI $ 40.00
PETME $ 46.00
PETRI $ 46.00
PEAMP $ 55.00
PEAPS-FE $ 81.00
LAZYI-FE $ 81.00
PECZ $ 109.00
PETTS-FE $ 97.00
IBAZY $ 127.00
IBHOI $ 106.00
PEWAT $ 139.00
IBCDI $ 79.00
IBDFI $ 104.00
PELIM-FE $ 127.00
PEFAM $ 159.00
PEFOX $ 200.00
PEFUN $ 207.00
IBERI $ 233.00
PLAVS $ 94.00
PLARY $ 118.00
PLASP-FE $ 182.00
PLAN-FE $ 373.00

Page 23

CONDENSORS

PEAS $ 84.00
PEOVX $ 131.00
PEPVRV $ 343.00
PEOVAX $ 644.00
POREK $ 152.00
IKOHRE $ 125.00
ORAPU $ 23.00
IKNOS $ 42.00
IMNOR $ 34.00
ORIX $ 84.00
ORCIKXINE $ 77.00
ORNCON $ 69.00
OBOSOB $ 141.00
OBSOBS $ 235.00
OREBREK $ 92.00
OREBREKINE $ 86.00
SEEBK $ 78.00
OBTUV $ 87.00

Page 24

VARIOCOLOR

LUXLOW-$LLOWOY $ 162.00
LUXLOW-$LLOWY $ 148.00
LUXLOW-$LLOWAT $ 150.00

Page 27

PHASE CONTRAST

PHALZ/N $ 59.00
PHALZ/H $ 59.00
PHAWK $ 12.00
PHANC/N $ 76.00
PHANC/H $ 76.00
PHANC-(-ne) $ 76.00
PHASG-FE/N $ 228.00
PHASG-FE/H $ 228.00
PHASG-FE-(ne) $ 228.00
PHERG-FE/N $ 232.00
PHERG-FE/H $ 232.00
PEPHG-(ne) $ 232.00
PHASH/N $ 108.00
PHASH/H $ 108.00
PHASW/N $ 121.00
PHASW/H $ 121.00
PHASEN/N $ 200.00
PHASEN/H $ 200.00
PHELB-FE/N $ 230.00
PHELB-FE/H $ 230.00
PHELB-(ne) $ 230.00
PHATH-FE/N $ 288.00
PHATH-FE/H $ 288.00

Page 22

EYEPIECES

ILAWS $ 39.00
IBLTI $ 25.00
IBLTI-LBXTI $ 41.00
ILAXU $ 39.00
ITWRM $ 41.00
WRIGHT EYEPIECE

ILCMY $ 138.00
<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHAKY</td>
<td>$146.00</td>
</tr>
<tr>
<td>PHAFT</td>
<td>$ 8.00</td>
</tr>
<tr>
<td>PHADS</td>
<td>$31.00</td>
</tr>
<tr>
<td>PHAMB</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>PPAMT</td>
<td>$200.00</td>
</tr>
<tr>
<td>PPAGS</td>
<td>$192.00</td>
</tr>
<tr>
<td>PEZUC</td>
<td>$107.00</td>
</tr>
<tr>
<td>PEZIZ</td>
<td>$146.00</td>
</tr>
<tr>
<td>LIXVI</td>
<td>$1,703.00</td>
</tr>
<tr>
<td>IITYE</td>
<td>$1,720.00</td>
</tr>
<tr>
<td>RZHI-RXIL</td>
<td>$ 96.00</td>
</tr>
<tr>
<td>PHADS</td>
<td>$31.00</td>
</tr>
<tr>
<td>LIXW</td>
<td>$ 21.00</td>
</tr>
<tr>
<td>PIRAZ</td>
<td>$138.00</td>
</tr>
<tr>
<td>MARKI</td>
<td>$ 18.00</td>
</tr>
<tr>
<td>IIVYB</td>
<td>$ 3.00</td>
</tr>
<tr>
<td>IYEL</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>DOBAD</td>
<td>$ 4.00</td>
</tr>
<tr>
<td>OBJZH</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>Set of 6: I4MHI</td>
<td>$12.00</td>
</tr>
<tr>
<td>Set of 6: I4ZDI</td>
<td>$12.00</td>
</tr>
<tr>
<td>RPIIT</td>
<td>$ 41.00</td>
</tr>
<tr>
<td>DECCO</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>DECKA</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>DECLL</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>DEREM</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>DERIL</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>DERYT</td>
<td>$ 2.20</td>
</tr>
<tr>
<td>DIBLE</td>
<td>$ 25.00</td>
</tr>
<tr>
<td>DOLEO</td>
<td>$ 1.00</td>
</tr>
<tr>
<td>OLBAD</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>ICCLI</td>
<td>$ 776.00</td>
</tr>
<tr>
<td>PEDRO</td>
<td>$ 616.00</td>
</tr>
<tr>
<td>ICHMI</td>
<td>$ 345.00</td>
</tr>
<tr>
<td>KOSGD</td>
<td>$ 55.00</td>
</tr>
<tr>
<td>PEFGO</td>
<td>$ 55.00</td>
</tr>
<tr>
<td>FEZMO</td>
<td>$ 55.00</td>
</tr>
<tr>
<td>PEZFU</td>
<td>$ 11.50</td>
</tr>
<tr>
<td>PEGSE</td>
<td>$ 11.50</td>
</tr>
<tr>
<td>DIME</td>
<td>$ 25.00</td>
</tr>
<tr>
<td>PEKLE</td>
<td>$ 3.00</td>
</tr>
<tr>
<td>ICXNI</td>
<td>$ 47.00</td>
</tr>
<tr>
<td>IGOZI</td>
<td>$ 53.00</td>
</tr>
<tr>
<td>IPCBI</td>
<td>$ 85.00</td>
</tr>
<tr>
<td>IICQO</td>
<td>$ 94.00</td>
</tr>
<tr>
<td>PEHOJ</td>
<td>$ 21.00</td>
</tr>
<tr>
<td>PIZUT</td>
<td>$ 9.00</td>
</tr>
<tr>
<td>LITLG</td>
<td>$ 9.00</td>
</tr>
<tr>
<td>LITNG</td>
<td>$ 9.00</td>
</tr>
<tr>
<td>KOBUF</td>
<td>$193.00</td>
</tr>
<tr>
<td>KOREB</td>
<td>$ 30.00</td>
</tr>
<tr>
<td>KORIC</td>
<td>$ 30.00</td>
</tr>
<tr>
<td>KOSGD</td>
<td>$ 30.00</td>
</tr>
<tr>
<td>KORUF</td>
<td>$ 23.00</td>
</tr>
<tr>
<td>KOSE</td>
<td>$ 23.00</td>
</tr>
<tr>
<td>KOSEC</td>
<td>$ 24.00</td>
</tr>
<tr>
<td>IIMUS</td>
<td>$106.00</td>
</tr>
<tr>
<td>PEEH</td>
<td>$123.00</td>
</tr>
<tr>
<td>IIRUX</td>
<td>$ 173.00</td>
</tr>
<tr>
<td>PODUH</td>
<td>$ 53.00</td>
</tr>
<tr>
<td>IIVXZ</td>
<td>$ 36.00</td>
</tr>
<tr>
<td>IIZHL</td>
<td>$ 1.00</td>
</tr>
<tr>
<td>IIVXZ</td>
<td>$ 36.00</td>
</tr>
<tr>
<td>IIZHL</td>
<td>$ 1.00</td>
</tr>
<tr>
<td>ICZHL</td>
<td>$ 16.00</td>
</tr>
<tr>
<td>ICKTI</td>
<td>$ 18.00</td>
</tr>
<tr>
<td>KOGIP</td>
<td>$ 14.00</td>
</tr>
<tr>
<td>KOMER</td>
<td>$ 12.00</td>
</tr>
<tr>
<td>KONOB</td>
<td>$ 31.00</td>
</tr>
<tr>
<td>KOMUB</td>
<td>$ 29.00</td>
</tr>
<tr>
<td>KONAX</td>
<td>$ 29.00</td>
</tr>
<tr>
<td>KONYE</td>
<td>$ 15.00</td>
</tr>
<tr>
<td>KOJANT</td>
<td>$ 77.00</td>
</tr>
<tr>
<td>KORAB</td>
<td>$ 75.00</td>
</tr>
<tr>
<td>KIVZD</td>
<td>$ 75.00</td>
</tr>
<tr>
<td>BEREX</td>
<td>$113.00</td>
</tr>
<tr>
<td>IIBXZI</td>
<td>$ 3.00</td>
</tr>
<tr>
<td>EJLPI</td>
<td>$196.00</td>
</tr>
<tr>
<td>KOMAW</td>
<td>$196.00</td>
</tr>
<tr>
<td>KONYE</td>
<td>$ 15.00</td>
</tr>
<tr>
<td>KOMEX</td>
<td>$207.00</td>
</tr>
<tr>
<td>KOMOZ</td>
<td>$207.00</td>
</tr>
<tr>
<td>KONIZ</td>
<td>$207.00</td>
</tr>
<tr>
<td>PIERZ</td>
<td>$ 79.00</td>
</tr>
<tr>
<td>PIBIN</td>
<td>$121.00</td>
</tr>
<tr>
<td>PIDOP</td>
<td>$114.00</td>
</tr>
<tr>
<td>PIJON</td>
<td>$ 78.00</td>
</tr>
<tr>
<td>KONAK</td>
<td>$ 67.00</td>
</tr>
<tr>
<td>KOHEP</td>
<td>$ 90.00</td>
</tr>
<tr>
<td>PISOL</td>
<td>$ 56.00</td>
</tr>
<tr>
<td>KORUK</td>
<td>$ 69.00</td>
</tr>
<tr>
<td>APTOL</td>
<td>$ 51.00</td>
</tr>
<tr>
<td>IIGZM</td>
<td>$283.00</td>
</tr>
<tr>
<td>IGEF</td>
<td>$ 46.00</td>
</tr>
<tr>
<td>ICPBI</td>
<td>$ 85.00</td>
</tr>
<tr>
<td>PEPJ</td>
<td>$ 53.00</td>
</tr>
<tr>
<td>IEDQI</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>IIDESI</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>IIDDUI</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>IIDDWI</td>
<td>$ 5.00</td>
</tr>
<tr>
<td>I3ZM5</td>
<td>$ 76.00</td>
</tr>
<tr>
<td>JELOT</td>
<td>$ 95.00</td>
</tr>
<tr>
<td>JEMAR</td>
<td>$109.00</td>
</tr>
<tr>
<td>JELAP</td>
<td>$131.00</td>
</tr>
<tr>
<td>JEMES</td>
<td>$145.00</td>
</tr>
<tr>
<td>JELUV</td>
<td>$ 17.00</td>
</tr>
<tr>
<td>JELER</td>
<td>$ 20.00</td>
</tr>
<tr>
<td>JENI</td>
<td>$ 31.00</td>
</tr>
<tr>
<td>JELIS</td>
<td>$ 21.00</td>
</tr>
<tr>
<td>110V JNEN</td>
<td>$ 36.00</td>
</tr>
<tr>
<td>INAB</td>
<td>$ 36.00</td>
</tr>
<tr>
<td>OBBMT</td>
<td>$ 20.00</td>
</tr>
<tr>
<td>OBTER</td>
<td>$ 23.00</td>
</tr>
<tr>
<td>IIDMU</td>
<td>$ 31.00</td>
</tr>
<tr>
<td>OKNOR</td>
<td>$170.00</td>
</tr>
<tr>
<td>FASOC</td>
<td>$248.00</td>
</tr>
<tr>
<td>KONAX</td>
<td>$ 29.00</td>
</tr>
<tr>
<td>KONYE</td>
<td>$ 15.00</td>
</tr>
<tr>
<td>INTEG</td>
<td>$ 704.00</td>
</tr>
<tr>
<td>IZBDI</td>
<td>$ 33.00</td>
</tr>
<tr>
<td>ISPFT</td>
<td>$ 9.00</td>
</tr>
<tr>
<td>IZKFI</td>
<td>$25.00</td>
</tr>
<tr>
<td>IFPI</td>
<td>$ 85.00</td>
</tr>
<tr>
<td>PODIF</td>
<td>$138.00</td>
</tr>
<tr>
<td>INTAF</td>
<td>$ 805.00</td>
</tr>
<tr>
<td>IZCFTI</td>
<td>$ 25.00</td>
</tr>
<tr>
<td>LIISR</td>
<td>$294.00</td>
</tr>
<tr>
<td>LIHEG</td>
<td>$297.00</td>
</tr>
<tr>
<td>BEEVE</td>
<td>$ 46.00</td>
</tr>
<tr>
<td>LIBM</td>
<td>$283.00</td>
</tr>
<tr>
<td>LIHBC</td>
<td>$283.00</td>
</tr>
<tr>
<td>SMTB</td>
<td>$135.00</td>
</tr>
<tr>
<td>STRIT</td>
<td>$145.00</td>
</tr>
<tr>
<td>HEWEX</td>
<td>$230.00</td>
</tr>
<tr>
<td>HEWZL</td>
<td>$242.00</td>
</tr>
<tr>
<td>IPEH</td>
<td>$264.00</td>
</tr>
<tr>
<td>PEENS</td>
<td>$269.00</td>
</tr>
<tr>
<td>IIWTO</td>
<td>$1,681.00</td>
</tr>
<tr>
<td>IIWZC</td>
<td>$1,686.00</td>
</tr>
<tr>
<td>PEPLG</td>
<td>$ 393.00</td>
</tr>
<tr>
<td>IIXY</td>
<td>$ 1,810.00</td>
</tr>
<tr>
<td>HEGAG</td>
<td>$ 427.00</td>
</tr>
<tr>
<td>HEGEN</td>
<td>$ 356.00</td>
</tr>
<tr>
<td>EEKAP</td>
<td>$ 69.00</td>
</tr>
<tr>
<td>HEDER</td>
<td>$ 23.00</td>
</tr>
<tr>
<td>HECUM</td>
<td>$ 9.00</td>
</tr>
<tr>
<td>HEBOF</td>
<td>$ 365.00</td>
</tr>
<tr>
<td>HEDOH-HEGOK</td>
<td>$174.00</td>
</tr>
<tr>
<td>RVIIN</td>
<td>$ 101.00</td>
</tr>
<tr>
<td>RZIIP</td>
<td>$ 62.00</td>
</tr>
<tr>
<td>HEEFAP</td>
<td>$ 163.00</td>
</tr>
<tr>
<td>HEEFEG</td>
<td>$235.00</td>
</tr>
<tr>
<td>HATII</td>
<td>$ 354.00</td>
</tr>
<tr>
<td>HABIC</td>
<td>$ 17.00</td>
</tr>
<tr>
<td>HIBVII</td>
<td>$ 10.00</td>
</tr>
<tr>
<td>HEBII</td>
<td>$381.00</td>
</tr>
<tr>
<td>HClIN</td>
<td>$444.00</td>
</tr>
<tr>
<td>REMVZ</td>
<td>$230.00</td>
</tr>
<tr>
<td>HDOZM</td>
<td>$ 16.00</td>
</tr>
<tr>
<td>HDIIM</td>
<td>$ 2.00</td>
</tr>
<tr>
<td>HPDI</td>
<td>$ 6.00</td>
</tr>
<tr>
<td>ACELU</td>
<td>$ 26.00</td>
</tr>
<tr>
<td>ACONA</td>
<td>$ 25.00</td>
</tr>
<tr>
<td>ICPBI</td>
<td>$ 85.00</td>
</tr>
<tr>
<td>ICDQI</td>
<td>$ 94.00</td>
</tr>
<tr>
<td>HIIGU</td>
<td>$444.00</td>
</tr>
<tr>
<td>HCILIN</td>
<td>$444.00</td>
</tr>
<tr>
<td>LUDUD</td>
<td>$173.00</td>
</tr>
<tr>
<td>LUKUL</td>
<td>$ 31.00</td>
</tr>
<tr>
<td>LUKEN</td>
<td>$ 43.00</td>
</tr>
<tr>
<td>LUKAR</td>
<td>$ 43.00</td>
</tr>
<tr>
<td>LONIGA</td>
<td>$ 21.00</td>
</tr>
<tr>
<td>LUCAX</td>
<td>$ 81.00</td>
</tr>
<tr>
<td>LUPFM</td>
<td>$216.00</td>
</tr>
<tr>
<td>LUCUC</td>
<td>$ 30.00</td>
</tr>
<tr>
<td>LUGAB</td>
<td>$358.00</td>
</tr>
<tr>
<td>Item</td>
<td>Price</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>LUPUG</td>
<td>$46.00</td>
</tr>
<tr>
<td>LUBAL</td>
<td>$31.00</td>
</tr>
<tr>
<td>LUBAV</td>
<td>$163.00</td>
</tr>
<tr>
<td>LUKUL</td>
<td>$31.00</td>
</tr>
<tr>
<td>LUKEN</td>
<td>$43.00</td>
</tr>
<tr>
<td>LUKAR</td>
<td>$43.00</td>
</tr>
<tr>
<td>LUBEX</td>
<td>$18.00</td>
</tr>
<tr>
<td>LUCAX</td>
<td>$81.00</td>
</tr>
<tr>
<td>LUPON</td>
<td>$216.00</td>
</tr>
<tr>
<td>LUDOC</td>
<td>$30.00</td>
</tr>
<tr>
<td>LUGECC</td>
<td>$625.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUREM</td>
<td>$29.00</td>
</tr>
<tr>
<td>LURIN</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

Page 49 STEREOSCOPIC MICROSCOPES

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUVEB-GOZUC</td>
<td>$707.00</td>
</tr>
<tr>
<td>GRAJS</td>
<td>$26.00</td>
</tr>
<tr>
<td>GRATK</td>
<td>$23.00</td>
</tr>
<tr>
<td>GRAPY-GOZAX</td>
<td>$904.00</td>
</tr>
<tr>
<td>GUKUZ</td>
<td>$33.00</td>
</tr>
<tr>
<td>GOZIZ</td>
<td>$45.00</td>
</tr>
<tr>
<td>GOEye</td>
<td>$37.00</td>
</tr>
<tr>
<td>GRC</td>
<td>$45.00</td>
</tr>
<tr>
<td>GERBE</td>
<td>$41.00</td>
</tr>
<tr>
<td>GRESC</td>
<td>$44.00</td>
</tr>
<tr>
<td>GRESW</td>
<td>$45.00</td>
</tr>
<tr>
<td>GREGS</td>
<td>$45.00</td>
</tr>
<tr>
<td>GREEY</td>
<td>$44.00</td>
</tr>
<tr>
<td>GRFST</td>
<td>$46.00</td>
</tr>
<tr>
<td>KUUF</td>
<td>$83.00</td>
</tr>
<tr>
<td>KYJU</td>
<td>$37.00</td>
</tr>
<tr>
<td>KUUS</td>
<td>$30.00</td>
</tr>
</tbody>
</table>

Page 52 PRADO ATTACHMENTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>KUUCT</td>
<td>$228.00</td>
</tr>
<tr>
<td>KRUU</td>
<td>$271.00</td>
</tr>
<tr>
<td>Colorplan f/2.5 90mm without outer sleeve #19228</td>
<td>$48.00</td>
</tr>
<tr>
<td>Hektor f/2.5 100mm without outer sleeve #19222</td>
<td>$39.00</td>
</tr>
<tr>
<td>Hektor f/2.5 120mm without outer sleeve #19223</td>
<td>$69.00</td>
</tr>
</tbody>
</table>

Page 53 PHOTOMICROGRAPHIC EQUIPMENT

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIKAS-M</td>
<td>$146.00</td>
</tr>
<tr>
<td>GIOW-M</td>
<td>$24.00</td>
</tr>
<tr>
<td>CALOS</td>
<td>$12.80</td>
</tr>
<tr>
<td>KOOCST</td>
<td>$147.00</td>
</tr>
<tr>
<td>FONOT</td>
<td>$1.20</td>
</tr>
<tr>
<td>GDIK</td>
<td>$8.00</td>
</tr>
<tr>
<td>IFELX-M</td>
<td>$168.50</td>
</tr>
<tr>
<td>EKXRL-III</td>
<td>$19.00</td>
</tr>
<tr>
<td>ZOII</td>
<td>$23.00</td>
</tr>
<tr>
<td>ZOCII</td>
<td>$138.00</td>
</tr>
<tr>
<td>MAKAM</td>
<td>$207.00</td>
</tr>
<tr>
<td>GDIK</td>
<td>$8.00</td>
</tr>
</tbody>
</table>

Page 54

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIXI</td>
<td>$147.00</td>
</tr>
</tbody>
</table>

Page 55 SPECIAL LIGHT SOURCES

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDULL</td>
<td>$1,755.00</td>
</tr>
<tr>
<td>AWLEE-REDYX</td>
<td>$163.00</td>
</tr>
</tbody>
</table>

Page 56

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACM</td>
<td>$3,186.00*</td>
</tr>
<tr>
<td>REDYX</td>
<td>$67.00</td>
</tr>
<tr>
<td>IKAMT</td>
<td>$960.00*</td>
</tr>
<tr>
<td>IKABAB</td>
<td>$2,213.00*</td>
</tr>
</tbody>
</table>

*Prices subject to confirmation on receipt of order.

Page 57

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGBEE</td>
<td>(replaced by BEECC) $53.00</td>
</tr>
<tr>
<td>DERW</td>
<td>$14.00</td>
</tr>
<tr>
<td>LANEF</td>
<td>$7.00</td>
</tr>
<tr>
<td>IPTAG</td>
<td>$13.00</td>
</tr>
<tr>
<td>IFACE</td>
<td>$13.00</td>
</tr>
<tr>
<td>IFADA</td>
<td>$13.00</td>
</tr>
<tr>
<td>IPOEF</td>
<td>$20.00</td>
</tr>
<tr>
<td>ISPST</td>
<td>$17.00</td>
</tr>
<tr>
<td>REDYX</td>
<td>$67.00</td>
</tr>
<tr>
<td>REPOV</td>
<td>on request</td>
</tr>
<tr>
<td>NAREZ</td>
<td>$55.00</td>
</tr>
<tr>
<td>NAPOB</td>
<td>$36.00</td>
</tr>
<tr>
<td>NAPUC</td>
<td>(instead of NAFUL) $34.00</td>
</tr>
<tr>
<td>NARAY</td>
<td>$34.00</td>
</tr>
</tbody>
</table>

PRICES AND SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Price List
Cat. #55-20/Eng